Electrochemically Active Nanoparticles Made by Flame Spray Pyrolysis

Frank O. Ernst, Joachim Ufheil, Sotiris E. Pratsinis, and Petr Novak
Electroactive Co₃O₄, Mn₃O₄, LiMn₂O₄, Li₄Ti₅O₁₂, and LiFe₅O₈ particles with spinel structure (normal, normal distorted, mixed, and mixed inverse) were made by flame spray pyrolysis at production rates of 10 to 20 g/h. These materials were characterized by X-ray diffraction and nitrogen adsorption and had a primary crystallite size in the range of 8 to 30 nm and exhibited high temperature stability. The electrochemical properties are reported exemplarily for LiMn₂O₄ and Li₄Ti₅O₁₂ as potential cathode and anode material, respectively, in secondary lithium-ion batteries.