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Abstract— This work focuses on fault-tolerant nonlinear
control of a gas phase polyethylene reactor. Initially, a family
of candidate control configurations, characterized by different
manipulated inputs, are identified. For each control configu-
ration, a bounded nonlinear feedback controller, that enforces
asymptotic closed-loop stability in the presence of constraints,
is designed, and the constrained stability region associated
with it is explicitly characterized using Lyapunov-based tools.
A switching policy is then derived, on the basis of the
stability regions, to orchestrate the activation/deactivation of
the constituent control configurations in a way that guarantees
closed-loop stability in the event of control system faults.
Closed-loop system simulations demonstrate the effectiveness
of the fault-tolerant control strategy.

I. I NTRODUCTION

Increasingly faced with the requirements of safety, re-
liability, and profitability, chemical process operation is
relying extensively on highly automated process control sys-
tems. Automation, however, tends to increase vulnerability
of the process to faults (for example, defects/malfunctions
in process equipment, sensors and actuators, faults in the
controllers or in the control loops) potentially causing a host
of economic, environmental, and safety problems that can
seriously degrade the operating efficiency of the process.
Problems due to faults may include physical damage to
the process equipment, increase in the wasteful use of raw
material and energy resources, increase in the downtime
for process operation resulting in significant production
losses, and jeopardizing personnel and environmental safety.
These considerations provide a strong motivation for the
development of methods for the design of advanced fault-
tolerant control systems that ensure an efficient and timely
response to enhance fault recovery and prevent faults from
propagating or developing into total faults.

Fault-tolerant control has been an active area of research
for the past ten years, and has motivated many research
studies in this area within the context of aerospace en-
gineering (see, for example, [18], [3], [24]). The whole
notion of fault-tolerant control is based on the underlying
assumption of the availability of more control configurations
than required. Under this assumption, the reliable control
approach dictates use of all the control loops at the same
time so that fault of one control loop does not lead to the
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fault of the entire control structure (for example, [23], [20]).
The use of only as many control loops as are required
at a time, is often motivated by economic considerations
(to save on unnecessary control action), and in this case,
fault-tolerant control can be achieved through control-loop
reconfiguration. Recently, fault-tolerant control has gained
increased attention within process control; however, the
available results have been based on the assumption of a
linear process description [13], [21], [1], [19].

Switching to fall-back control configurations in the event
of faults results in an overall process that exhibits intervals
of piecewise continuous behavior interspersed by discrete
transitions. A hybrid systems framework therefore provides
a natural setting for the analysis and design of fault-tolerant
control structures. However, at this stage, despite the large
and growing body of research work on a diverse array of
hybrid system problems (e.g., [12], [11], [6], [2], [9]), the
use of a hybrid system framework for the study of fault-
tolerant control problems has received limited attention. In
[10], a hybrid systems approach to fault-tolerant control was
employed where upon occurrence of a fault, stability region-
based reconfiguration is done to achieve fault-tolerant con-
trol. In [17], the problem of implementing integrated fault-
detection and fault-tolerant control was addressed under
state and output feedback. Designing fault-tolerant control
structures that prevent loss of product (due to limit cycles)
and possible loss of equipment (due to unacceptably high
temperatures) in the event of a fault in the control config-
uration is therefore of important industrial value.

This work focuses on fault-tolerant control of a gas
phase polyethylene reactor modeled by seven nonlinear
ODEs. Polyethylene is the most popular of all synthetic
commodity polymers, with current worldwide production
of more than 40 billion tonnes per year. Large proportion
of this polyethylene is produced in gas phase reactors using
Ziegler-Natta catalysts. In gas phase polyethylene reactor,
the temperature in the reaction zone is kept above the dew
point of the reactant and below the melting point of the
polymer to prevent melting and consequent agglomeration
of the product particles. Most commercial gas phase flu-
idized bed polyethylene reactors are operated in a relatively
narrow temperature range between75◦C and110◦C [22]. It
has been demonstrated [4], [16], [14] that without feedback
temperature control, industrial gas phase polyethylene re-
actors are prone to unstable steady-states, limit cycles, and
excursions toward unacceptable high temperature steady-
states.



To develop a fault-tolerant control system for a gas
phase polyethylene reactor, we initially identify a family of
candidate control configurations, characterized by different
manipulated inputs on the basis of a detailed model of the
process. For each control configuration, a bounded non-
linear feedback controller, that enforces asymptotic closed-
loop stability in the presence of constraints, is designed, and
the constrained stability region associated with it is explic-
itly characterized using Lyapunov-based tools. A switching
policy is then derived, on the basis of the stability regions,
to orchestrate the activation/deactivation of the constituent
control configurations in a way that guarantees closed-loop
stability in the event of control system faults. Closed-loop
system simulations demonstrate the effectiveness of the
fault-tolerant control strategy.

II. PROCESS DESCRIPTION AND MODELING

Figure 1 shows a schematic of an industrial gas phase
polyethylene reactor system. The feed to the reactor consists
of ethylene, comonomer, hydrogen, inerts, and catalyst.
A stream of unreacted gases flows from the top of the
reactor and is cooled by passing through a heat exchanger
in counter-current flow with cooling water. Cooling rates in
the heat exchanger are adjusted by instantaneously blending
cold and warm water streams while maintaining a constant
total cooling water flowrate through the heat exchanger.
Mass balance on hydrogen and comonomer have not been
considered in this study because hydrogen and comonomer
have only mild effects on the reactor dynamics [16]. A
mathematical model for this reactor has the form [5]:
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where

bt = VpCv

√
([M1] + [In]) ·RR · T − Pv

RM1 = [M1] · kp0 · exp[−Ea

R ( 1
T − 1

Tf
)] · (Y1 + Y2)

Cpg = [M1]
[M1]+[In]Cpm1 + [In]

[M1]+[In]CpIn

Hf = FM1Cpm1(Tfeed − Tf )
+FInCpIn(Tfeed − Tf )

Hg1 = Fg(Tg1 − Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T − Tf )RM1MW1

(2)
Table I includes the definition of all the variables used in
Eqs.1-2.

TABLE I

PROCESS VARIABLES.

ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
Cv vent flow coefficient
Cpw specific heat capacity of the water
CpIn specific heat capacity of the inert gas
Cppol specific heat capacity of the polymer
Ea activation energy
Fc flow rate of catalyst
Fg flow rate of recycle gas
FIn flow rate of inert
FM1 flow rate of ethylene
Fw flow rate of cooling water
Hf enthalpy of fresh feed stream
Hg0 enthalpy of total gas outflow stream from reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1 deactivation rate constant for catalyst site 1
kd2 deactivation rate constant for catalyst site 2
kp0 pre-exponential factor for polymer propagation rate
[M1] molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
Pv pressure downstream of bleed vent
R ideal gas constant, unit of J

mol·K
RR ideal gas constant, unit ofm

3·atm
mol·K

T reactor temperature
Tf reference temperature
Tfeed feed temperature
Tg1 temperature of recycle gas stream from exchanger
Tw1 temperature of cooling water stream from exchanger
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1 moles of active site type1
Y2 moles of active site type2

The values of the process parameters are listed in Table
II. It was verified that under these operating conditions, the
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Fig. 1. Industrial gas phase polyethylene reactor system.

TABLE II

PARAMETER VALUES AND UNITS [5].

Vg = 500 m3

Vp = 0.5
Pv = 17 atm
Bw = 7 · 104 kg

kp0 = 85 · 10−3 m3

mol·s
Ea = (9000)(4.1868) J

mol
Cpm1 = (11)(4.1868) J

mol·K
Cv = 7.5 atm−0.5 mol

s
Cpw = (103)(4.1868) J

kg·K
CpIn = (6.9)(4.1868) J

mol·K
Cppol = (0.85 · 103)(4.1868) J

kg·K
kd1 = 0.0001 s−1

kd2 = 0.0001 s−1

MW1 = 28.05 · 10−3 kg
mol

Mw = 3.314 · 104 kg
Mg = 6060.5 mol

MrCpr = (1.4 · 107)(4.1868) J
K

Hreac = (−894 · 103)(4.1868) J
kg

UA = (1.14 · 106)(4.1868) J
K·s

FIn = 5 mol
s

FM1 = 190 mol
s

Fg = 8500 mol
s

Fw = (3.11 · 105)(18 · 10−3) kg
s

F s
c = 5.8

3600
kg
s

Tf = 360 K
T s

feed = 293 K

Twi = 289.56 K

RR = 8.20575 · 10−5 m3·atm
mol·K

R = 8.314 J
mol·K

ac = 0.548 mol
kg

umax
1 = 5.78 · 10−4 K

s
umax
2 = 3.04 · 10−4 mol

s
[In]s = 439.68 mol

m3

[M1]s = 326.72 mol
m3

Y1s = 3.835 mol
Y2s = 3.835 mol
Ts = 356.21 K
Tw1s

= 290.37 K
Tg1s

= 294.36 K

open-loop system behaves in an oscillatory fashion (i.e.,
the system possesses an open-loop unstable steady-state
surrounded by a limit cycle).

The control objective is to stabilize the reactor. To accom-
plish this objective in the presence of control system faults,
we consider the following manipulated input candidates:

1) Feed temperature,u1 = FM1Cpm1+FInCpIn

MrCpr+BwCppol
(Tfeed −

T s
feed), subject to the constraint|u1| ≤ u1

max =
FM1Cpm1+FInCpIn

MrCpr+BwCppol
(20) K

s .
2) Catalyst flowrate,u2 = (Fc − F s

c )ac, subject to the
constraint|u2| ≤ u2

max = ( 2
3600 )ac

mol
s .

Each of the above manipulated inputs represents a unique
control configuration (or control loop) that, by itself, can
stabilize the reactor. The first control configuration, with
feed temperature (Tfeed) as the manipulated input, will
be considered as the primary configuration. In the event
of some faults in this configuration, however, the plant
supervisor, will have to activate the fall-back configuration
in order to maintain closed-loop stability. The question
which we address in the next section, is how the supervisor
determines if the fall-back control configuration will be able
to stabilize the reactor if the primary control configuration
fails.

III. FAULT-TOLERANT CONTROL

Having identified the candidate control configurations
that can be used, we outline in this section the main
steps involved in the fault-tolerant control system design
procedure. These include: (1) the synthesis of a stabilizing
feedback controller for each control configuration, (2) the
explicit characterization of the constrained stability region
associated with each configuration, and (3) the design of
a switching law that orchestrates the re-configuration of
control system in a way that guarantees closed-loop stability
in the event of faults in the active control configuration.

To present our results in an compact form, we write
the model of Eq.1 in a deviation (from the operating
unstable steady-state) variable form, by definingx =
[x1 x2 x3 x4 x5 x6 x7]T where x1 = In − Ins,
x2 = M1 − M1s , x3 = Y1 − Y1s , x4 = Y2 − Y2s ,
x5 = T − Ts, x6 = Tw1 − Tw1s

, x7 = Tg1 − Tg1s
,

and obtain a continuous-time nonlinear system with the
following state-space description:

ẋ(t) = fk(t)(x(t)) + gk(t)(x(t))uk(t)

|uk(t)| ≤ umax
k

k(t) ∈ K = {1, 2}
(3)

where x(t) ∈ IR7 denotes the vector of process state
variables anduk(t) ∈ [−umax

k , umax
k ] ⊂ IR denotes the

constrained manipulated input associated with thek-th
control configuration.k(t), which takes values in the finite
index setK, represents a discrete state that indexes the
vector fieldsfk(·), gk(·) as well as the manipulated input
uk(·). The explicit form of the vector fieldsfk(t)(x(t))
and gk(t)(x(t)) can be obtained by comparing Eq.1 and



Eq.3 and is omitted for brevity. For each value thatk
assumes inK, the process is controlled via a different ma-
nipulated input which defines a given control configuration.
Switching between the available two control configurations
is controlled by a higher-level supervisor that monitors the
process and orchestrates, accordingly, the transition between
the different control configurations in the event of control
system fault. This in turn determines the temporal evolution
of the discrete state,k(t). The supervisor ensures that only
one control configuration is active at any given time, and
allows only a finite number of switches over any finite
interval of time. The control objective is to stabilize the
process of Eq.3 in the presence of actuator constraints
and faults in the control system. The basic problem is
how to coordinate switching between the different control
configurations (or manipulated inputs) in a way that respects
actuator constraints and guarantees closed-loop stability in
the event of faults. To simplify the presentation of our
results, we will focus only on the state feedback problem
where measurements of all process states are available for
all times.

(a) Constrained feedback controller synthesis:

In this step, we synthesize, for each control configuration,
a feedback controller that enforces asymptotic closed-loop
stability in the presence of actuator constraints. This task
is carried out on the basis of the process input/output
dynamics. While our control objective is to achieve full
state stabilization, process outputs are introduced only to
facilitate transforming the system of Eq.1 into a form more
suitable for explicit controller synthesis.

1. For the primary control configuration withu1 =
FM1Cpm1+FInCpIn

MrCpr+BwCppol
(Tfeed − T s

feed), we consider the output
y1 = T −Ts. This choice yields a relative degree ofr1 = 1
with respect tou1. The input/output dynamics can be then
expressed in terms of the time-derivative of the variable:
e1 = T − Ts.

2. For the fall-back control configuration withu2 =
(Fc−F s

c )ac, we choose the outputy2 = T−Ts which yields
a relative degree ofr2 = 2 and the corresponding variables
for describing the input/output dynamics take the form:
e1
2 = T − Ts, e2

2 = Hf+Hg1−Hg0−Hr−Hpol

MrCpr+BwCppol
. In particular,

for the fall-back control configuration, the system describing
the input/output dynamics has the following form:

ė2 = A2e2 + l2(e2) + b2α2u2

:= f̄2(e2) + ḡ2(e2)u2
(4)

where A2 =
[

0 1
0 0

]
, b2 =

[
0
1

]
, e2 =

[
e1
2

e2
2

]
,

l2(·) = L2
f2

h2(x), α2(·) = Lg2Lf2h2(x), h2(x) = y2 is the
output associated with the fall-back control configuration
(the explicit form of the functionsf2(·) andg2(·) is omitted
for brevity). The inverse dynamics, for both the first and

second control configurations, have the following form:

η̇1 = Ψ1,k(e, η)
...

η̇7−rk
= Ψ7−rk,k(e, η)

(5)

wherek = 1, 2 andΨ1,k · · ·Ψ7−rk,k are nonlinear functions
of their arguments describing the evolution of the inverse
dynamics of thek-th mode.

Using a quadratic Lyapunov function of the formVk =
eT
k Pkek, where Pk is a positive-definite symmetric ma-

trix that satisfies the Riccati inequalityAT
k Pk + PkAk −

PkbkbT
k Pk < 0, we synthesize, for each control-loop, a

bounded nonlinear feedback control law (see [15], [7], [8])
of the form:

uk = −r(x, umax
k )Lḡk

Vk (6)

wherer(x, umax
k ) =

L∗̄
fk

Vk +
√

(L∗̄
fk

Vk)2 + (umax
k |Lḡk

Vk|)4

(|Lḡk
Vk|)2

[
1 +

√
1 + (umax

k |Lḡk
Vk|)2

] (7)

andL∗̄
fk

Vk = Lf̄k
Vk + ρ|ek|2, ρ > 0. The scalar function

r(·) in Eqs.6-7 can be considered as a nonlinear controller
gain. It can be shown that each controller asymptotically
stabilizes thee states in each mode. This result together
with the property of theη states can then be used to show,
via a small gain argument, for each control configuration,
input-to-state stable (we verified this through simulation and
analysis of the system of Eq.7 withek = 0 for both k = 1
and k = 2). This controller gain, which depends on both
the size of actuator constraints,umax

k , and the particular
configuration used is shaped in a way that guarantees
constraint satisfaction and asymptotic closed-loop stability
within a well-characterized region in the state-space. The
characterization of this region is discussed in the next step.

(b) Characterization of constrained stability regions
Given that actuator constraints place fundamental lim-

itations on the initial conditions that can be used for
stabilization, it is important for the control system designer
to explicitly characterize these limitations by identifying,
for each control configuration, the set of admissible initial
conditions starting from where the constrained closed-loop
system is asymptotically stable. As discussed in step (c)
below, this characterization is necessary for the design of an
appropriate switching policy that ensures the fault-tolerance
of the control system. The control law designed in step
(a) provides such a characterization. Specifically, using a
Lyapunov argument, one can show that the set

Θ(umax
k ) = {x ∈ IR7 : L∗̄

fk
Vk ≤ umax

k |Lḡk
Vk|} (8)

describes a region in the state space where the control
action satisfies the constraints and the time-derivative of
the corresponding Lyapunov function is negative-definite
along the trajectories of the closed-loop system. Note that



the size of this set depends, as expected, on the magnitude
of the constraints. In particular, the set becomes smaller as
the constraints become tighter (smallerumax

k ). For a given
control configuration, one can use the above inequality to
estimate the stability region associated with this configura-
tion. This can be done by constructing the largest invariant
subset ofΘ, which we denote byΩ(umax

k ). Confining the
initial conditions within the setΩ(umax

k ) ensures that the
closed-loop trajectory stays within the region defined by
Θ(umax

k ), and therebyVk continues to decay monotonically,
for all times that thek-th control configuration is active (see
[7] for further discussion on this issue).

An estimate of the region of constrained closed-loop
stability for the full system is obtained by defining a
composite Lyapunov function of the formVck

= Vk + Vηk
,

whereVηk
= ηT Pηk

η andPηk
is a positive definite matrix

and choosing a level set ofVck
, Ωck

, for which V̇ck
< 0 for

all x in Ωck
.

Remark 1: Note that the composite Lyapunov functions,
Vck

, used in implementing the switching rules, are in
general different from the Lyapunov functionsVk used in
designing the controllers. Owing to the ISS property of the
ηk-subsystem of each mode, only a Lyapunov function for
the ek subsystem, namelyVk, is needed and used to design
a controller that stabilizes the fullek − ηk interconnection
for each mode. However, when implementing the switching
rules (constructing theΩck

), we need to track the evolution
of x (and hence the evolution of bothek andηk). Therefore,
the Lyapunov functions used in verifying the switching
conditions at any given time,Vck

, are based onx. From the
asymptotic stability of each mode, the existence of these
Lyapunov functions is guaranteed by converse Lyapunov
theorems.

(c) Supervisory switching-logic
Having designed the feedback control laws and char-

acterized the stability region associated with each control
configuration, the third step is to derive the switching policy
that the supervisor needs to employ to activate/deactivate the
appropriate control configurations in the event of faults. The
key idea here is that, because of the limitations imposed by
constraints on the stability region of each configuration, the
supervisor can only activate the control configuration for
which the closed-loop state is within the stability region at
the time of control system fault. Without loss of generality,
let the initial actuator configuration bek(0) = 1 and let
Tfault be the time when this configuration fails, then the
switching rule given by

k(Tfault) = 2 if x(Tfault) ∈ Ωc2(u
max
2 ) (9)

guarantees asymptotic closed-loop stability. The implemen-
tation of the above switching law requires monitoring the
closed-loop state trajectory with respect to the stability
regions associated with the various actuator configurations.
This idea of tieing the switching logic to the stability
regions was first proposed in [9] for the control of switched

nonlinear systems.

IV. SIMULATION RESULTS

Several simulation runs were carried out to evaluate the
effectiveness of the proposed fault-tolerant control strategy.
Figure 2 shows the evolution of the open-loop state pro-
files. Under the operating conditions listed in Table II, the
open-loop system behaves in an oscillatory fashion (i.e.,
the system possesses an open-loop unstable steady-state
surrounded by a stable limit cycle). First, process operation
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Fig. 2. Evolution of the open-loop state profiles.

under primary control configuration was considered (i.e.,
the feed temperature,Tfeed, is the manipulated input) and
a bounded nonlinear controller was designed using the
formula of Eqs.6-7. Specifically, a quadratic function of the
form V1 = 1

2 (T − Ts)2 andρ1 = 0.01 were used to design
the controller and a composite Lyapunov function of the
form Vc1 = 5×10−3(In−Ins)4+5×10−4(M1−M1s)2+
5×10−11(Y1−Y1s)2+5×10−11(Y2−Y2s)2+5×10−4(T−
Ts)2+5×10−11(Tw1−Tw1s)

2+5×10−11(Tg1−Tg1s)
2 was

used to estimate the stability region of the primary control
configuration yielding acmax

1 = 66187.5. Figure 3 shows
the evolution of the closed-loop state profiles and Figure 4
shows the evolution of the manipulated inputs starting from
the initial conditionIn(0) = 450 mol

m3 , M1(0) = 340 mol
m3 ,

Y1(0) = 4.6 mol, Y2(0) = 4.6 mol, T (0) = 360 K,
Tw1(0) = 300 K, and Tg1(0) = 300 K for which
Vc1 = 56.7762. Since this initial state is within the stability
region of the primary control configuration, the controller
achieves stabilization of the steady-state.

Next, we consider the case of having a fault in the
primary control configuration. In this case, the supervisor
has available a fall-back control configuration with the
catalyst flowrate,Fc, as the manipulated input. A quadratic
Lyapunov function of the formV2 = eT

2 P2e2 andρ2 = 0.01
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was used to design the controller that uses the fall-back
control configuration and a composite Lyapunov function
of the formVc2 = 5× 10−3(In− Ins)4 + 5× 10−4(M1 −
M1s)2 +5×10−11(Y1−Y1s)2 +5×10−11(Y2−Y2s)2 +5×
10−4(T−Ts)2+5×10−11(Tw1−Tw1s)

2+5×10−11(Tg1−
Tg1s)

2 was used to estimate the stability region of the fall-
back control configuration yielding acmax

2 = 66187.4.
To demonstrate that control loop reconfiguration results

in fault-tolerant reactor control in the presence of input
constraints, we carry out the following simulations: We
first initialize the reactor atIn(0) = 450 mol

m3 , M1(0) =
340 mol

m3 , Y1(0) = 4.6 mol, Y2(0) = 4.6 mol, T (0) =
360 K, Tw1(0) = 300 K, andTg1(0) = 300 K resulting in
Vc1 = 56.7762 which implies that this initial state is within
the stability region of the primary control configuration.
Consider now, a fault in the primary control configuration
at timeTfault = 5.56 hrs (see dashed lines in Figures 5–
6). The states of the process at the time of the fault is of
the following: In(Tfault) = 449.6575 mol

m3 , M1(Tfault) =
316.9265 mol

m3 , Y1(Tfault) = 3.8573 mol, Y2(Tfault) =

3.8573 mol, T (Tfault) = 356.3379 K, Tw1(Tfault) =
290.3692 K, and Tg1(Tfault) = 294.3422 K. In the
case of no switching to fall-back control configuration or
no backup control configuration available, the system will
behave in an oscillatory behavior (solid line in Figure 5).
However, applying our fault-tolerant control strategy, the
supervisor, then, checks that, if the control configuration
were to switched to the fall-back control configuration,
Vc2 = 49.5693, which implies the state at the time of
the fault is within the stability region of the fall-back
control configuration. Switching to the fall-back control
configuration guarantees closed-loop stability (solid lines
in Figure 6). Figure 7 shows the manipulated input profiles
under primary control configuration (left) and fall-back
control configuration (right). Both inputs change smoothly
with time to achieve fault-tolerant control.
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Fig. 5. Evolution of the closed-loop state profiles under primary
control configuration (dashed lines) and no fall-back control configuration
available to switch to (or fall-back control configuration is not activated)
resulting in open-loop oscillatory behavior (solid lines) after primary
control configuration fails atTfault = 5.56 hrs.
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