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Abstract 
 
 Ion-exchange resins used in chromatographic separation, ion exchange, and 
heterogeneous catalysis are elastic polymeric materials. The extent of swelling of the polymer, 
and thus the dimensions of resin particles, change in response to changes in, for example, the 
solvent composition and salt content of the surrounding liquid. This is reflected to the 
intraparticle mass transfer rates through the mesh width of the apertures in the polymer 
network. 
 
 Mass transfer and chemical reactions in sulfonated PS–DVB ion exchange resins during 
shrinking and swelling of the particles were investigated experimentally and with computer 
simulations. A specially constructed flow-through cell and an optical microscope were used to 
monitor the diffusion induced volume changes of resin particles.  
 
 The applicability of particle diffusion models based on the Fick's law and the Maxwell–
Stefan approach, as well as two-point approximations of these, was investigated. In the 
Maxwell–Stefan approach, the chemical potentials of the mobile species were calculated with 
models derived from thermodynamics of polymer solutions and gels by taking into account the 
elastic nature of the polymer. The effect of swelling ratio on the diffusion coefficients was 
described with a geometric obstruction model for the sake of simplicity. The governing 
equations were written and solved in polymer mass coordinates, which enables faster and 
more accurate numerical solution. 
 
 The choice of the mass transfer model was found to have a large impact on the 
predicted swelling behavior of the resins. It was shown that, owing to the elastic nature of the 
resins, diffusion coupled with volume changes of particles was best described with a model 
that explicitly takes the presence of the cross-links in the polymer into account. 
 
 
Introduction 
 
 Several approaches to modeling diffusion of solvents in cross-linked polymers have 
been presented in the literature. The essence of the Tanaka–Fillmore approach [1, 2] is that 
liquids do not diffuse into the polymer network but the polymer network diffuses into a stagnant 
fluid. The diffusion coefficient of the polymer network is defined using the bulk modulus of the 
network and a solvent–polymer friction coefficient. The present work focuses on diffusion-
induced swelling of gels in liquid mixtures with two or more components. To the best of our 



knowledge, the Tanaka–Fillmore approach has not been extended to such systems, and only 
models describing penetration of liquids into the polymer network are considered in this work. 
 
 In rigorous treatments of the problem [3 – 5], the presence of the cross-links, and the 
resulting limited expansibility of the polymer network, is accounted for by introducing stress 
tensors in the equations of motion. Consequently, the volumetric flux into a volume element of 
the particle is reduced if it results in an increase in the stress of the polymer network. An 
alternative way is to embed the effect of the cross-links into the driving force via the solvent 
activity [6], which depends on the extent of swelling. 
 
 Diffusion in gel-type ion-exchange resins is analyzed in this study by using two 
simplified approaches (i.e., without solving the equations of motion): Fick’s law and the 
generalized Maxwell–Stefan formalism. Mass balance equations are given for spherical 
particles. The local swelling ratio, and hence the volume of the particle, is allowed to change 
with time. The mass transfer rates depend strongly on the polymer volume fraction and this 
effect is included by means of a simple obstruction model. In addition, simplified methods for 
calculating the average concentration in a particle as a function of time without solving the 
partial differential equation system are presented. The applicability of these models in 
describing swelling and shrinking rates of ion-exchange resin particles is discussed. 
 
 
Materials and methods 
  
 A sulfonated, gel-type poly(styrene-co-divinylbenze) resin CS16G (Finex Oy, Finland) 
was used in the H+ form. The resin has a cross-link density of 8 wt-%, and an ion-exchange 
capacity of 5.2 equiv/g. Deionized water and reagent grade acetic acid were used as the liquid 
components. 
 

The swelling and shrinking kinetics of the resins in response to changes in the 
composition of the surrounding liquid were monitored in a specially constructed flow-through 
cell. The volume of the cell was approximately 0.1 cm3, and the volumetric flow rate of the 
solvent mixture was typically 6.0 cm3 min-1. All experiments were performed at room 
temperature. One or more resin beads was preconditioned in a solvent mixture and placed in 
the cell. A step change was made in the solvent composition, and the resulting swelling or 
shrinking process was recorded with a digital camera through an optical microscope. The 
sampling rate was between 1 and 30 seconds, depending on the rate of the volume change of 
the particle. The particle sizes were determined off-line by using image analysis.  
 

The shrinking kinetics measurements were started from water-swollen resin. After the 
new equilibrium state was reached, the swelling kinetics experiments were performed by 
displacing the aqueous acetic acid solution in the cell with water. 
 
 
Model development 
 
Coordinate system 
 Polymer mass coordinates were chosen as the frame of reference in the calculations [5, 
7]. In this coordinate system, the mass of the dry polymer increases linearly along the 



coordinate axis. If the location of a calculation element is defined with respect to the mass 
coordinate system, it remains fixed although the volume of the particle, and that of the 
calculation element, may change. Mathematically, the transformation between the two 
coordinate systems is defined through the differential operators as shown in Eq. (1).  
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 The mass coordinate system has also another property that is of practical importance: 
when finite-difference methods with equidistant grid spacing are used for spatial discretization 
of the resulting partial differential equation system, the grid points in the mass-coordinate 
system are automatically concentrated in the vicinity of the particle surface. It is this region 
where the steepest concentration gradients are to be expected, and a denser grid improves 
computational accuracy and stability. Since a smaller number of grid points is required, the 
numerical solution is also faster. 
 
  
Fickian diffusion model 
 In the mass coordinate system, the differential material balance describing the Fickian 
diffusion becomes as shown in Eqs. (2) and (3), where θ is the local swelling ratio and ρm is 
the density of the polymer. The numerical value of the diffusion coefficient is not affected by 
the coordinate transformation. It should be noted, however, that the assumption of negligible 
molar average velocity of the mixture with respect to the coordinate system has not been 
removed. When practical is preferred to rigorous, Eqs. (2) and (3) can be used as an 
approximation even for concentrated solutions and multicomponent systems.  
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Maxwell–Stefan approach 
 Use of a thermodynamic correction factor in Fick’s law of diffusion provides a better 
description of diffusion rates in non-ideal systems, but does not remove the assumption of 
negligible molar average velocity of the mixture. An alternative and more general treatment of 
multicomponent mass transfer employs the generalized Maxwell–Stefan equations.  
 

When the chemical potential is the only driving force, the force balance in the mass 
coordinate system may be written as shown in Eq. (4). Since molar quantities are not well 
defined for cross-linked polymers, the friction forces are here assumed to be proportional to 
volume fractions. It should be noted that the species velocities are evaluated relative to the 
polymer mass. The bootstrap relation is obtained from the fact that the velocity of the polymer 

with respect to itself is zero, i.e. W

+1 0Nu = . The index N+1 in the summations refers to the 

polymer. 
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 The material balance for a volume element during multicomponent diffusion controlled 
volume changes may be written as in Eqs. (5) and (6). The molar fluxes are obtained from a 
set of force balance equations by using the usual methods of linear algebra. 
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Estimates for the liquid–liquid Maxwell–Stefan diffusivities were calculated with the 

interpolation formula shown in Eq. (7) [8].  
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Linear driving force approximation 
 In the solid phase linear driving force approximation (LDF), the diffusion driving force is 
approximated by the departure of the average concentration in the particle from phase 
equilibrium, rather than by evaluating the local concentration gradient at the particle surface. In 
the case of volume changes of the particles, the temporal derivative of the average solid phase 
concentration becomes as shown in Eq. (8). An over-bar implies a quantity averaged over the 
particle volume, and a hat denotes a quantity evaluated at the particle surface in equilibrium 
with the liquid phase. 
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LDF approximation in the Maxwell–Stefan formalism 

The linear driving force model may also be interpreted such that mass transfer in the 
particle occurs across a hypothetical film that comprises the relevant properties of the solid 
phase. When the finite difference form of the Maxwell–Stefan model (i.e., Eq. (4) with 

W Wµ µ∂ ∂ ≈ ∆ ∆ ) is applied to diffusion across such a film, one obtains Eq. (10). A tilde 

denotes a mean value in the film. Eqs. (10) – (12) together will be here referred to as LDFMS 
model.  
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Effect of extent of swelling on the diffusion coefficients 
 The extent of swelling of an ion-exchange resin affects the mesh width of the free space 
as well as the tortuosity of the polymer network. Extensive experimental investigation of 
sorption kinetics is beyond the scope of the present work, and a simple correlation is desired. 
For this purpose the obstruction model shown in Eq. (13) was chosen. The model is based on 
that proposed by Mackie and Meares [9] for describing diffusion of electrolytes in ion-exchange 
membranes.  
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 Since the original model does not take account of size or shape of the diffusing species, 
it only applies to homogeneous materials with a large mesh width relative to the hydrodynamic 
diameter of the diffusing species. The reference state in the original model is free liquid. In this 
work, however, the reference state was chosen as a hypothetical, infinitely dilute solution with 

respect to the polymer, and the diffusion coefficients in the reference state, S,ref

iD , are regarded 

as adjustable parameters. The lattice model used by Mackie and Meares in the derivation of 
the model lends itself readily to the Maxwell–Stefan approach as well. The correlation in Eq. 
(13) is therefore used in both the Fickian diffusion model and the Maxwell–Stefan equations. In 
the latter case, the Fickian diffusion coefficients are replaced with the Maxwell–Stefan 

diffusivities S

iD  and S,ref

iD . 

 
Boundary conditions for particle diffusion models 
 The liquid film mass transfer resistance was neglected in the calculations. The boundary 
condition at the particle surface was therefore obtained from sorption isotherms of the liquid 
components (see ref. [10] for sorption and swelling data and correlation). A condition of zero 

flux through the center of the particle yields boundary conditions S 0iC W∂ ∂ =  and 0Wθ∂ ∂ =  

 
 
Results and discussion 

 
The applicability of the diffusion models presented above was tested with data obtained 

from non-reactive experiments with water–acetic acid mixtures.  The shrinking and swelling of 
CS16G(H+) as the external phase is changed from water to a 50 mol-% aqueous acetic acid 
mixture and vice versa are displayed in Figure 1. The swelling ratio is plotted against a 
modified time variable in order to enable comparison of the results with particles of different 
size.  

 
When focusing first on the shrinking data, it is observed that the swelling ratio 

decreases rapidly, passes through a minimum, and increases slowly towards the new 



equilibrium level. The existence of the minimum is due to the relatively large difference in the 
diffusivities of water and acetic acid: the volumetric flux of water out of the resin is larger than 
that of the acid into the resin. At the minimum, the volumetric fluxes of the two species have 
become equal. Swelling dynamics of the CS16G when moving from 50 mol-% water–HOAc 
mixture to pure water shows opposite behavior – there exists a maximum in the extent of 
swelling. 

 
The data in Figure 1 also shows that the final state is attained more slowly during 

shrinking than swelling. This phenomenon was already observed in the early works with ion-
exchange resins and other cross-linked polymers [11, p. 293]. Since shrinking starts from the 
surface of the particle, the solvents have to diffuse through a dense region, the thickness of 
which only increases with time. 
 

The calculated shrinking and swelling kinetic curves are plotted in Figure 1 and the 
diffusion coefficient values at the reference state used in the calculations are given in Table 1.  
 

As seen in Figure 1, all models are capable of reproducing the basic shape of the 
curves but, as expected, the particle diffusion models perform better than the linear driving 
force approximations. The Maxwell–Stefan approach yielded a higher index of determination 
(R2 = 98.9) than the Fickian model (R2 = 94.0). As usual, the LDF and LDFMS models 
underestimate the diffusion rates at the early stages of the process, but approach the 
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Figure 1. Swelling and shrinking kinetics of CS16G(H+) at room temperature. Initial and final states: 50 
mol-% HOAc–water mixture and pure water. Initial particle size: (�) 984 m; (�) 903 m. Solid lines 
are calculated with particle diffusion models using Fick’s law (–––) and the generalized Maxwell–Stefan 
equations (▬▬). Dashed lines are calculated with the approximate LDF (— —) and LDFMS (▬ ▬) 
models. 



equilibrium state sooner than the particle diffusion models. The LDF model predicts larger 
changes in the extent of swelling than the Fickian model in both shrinking and swelling 
experiments. In fact, a volume-average swelling ratio of 3.5, predicted by the LDF model, is 
hardly physically realistic for the CS16G resin under any conditions. 
 
 

The LDFMS model (i.e., Maxwell–Stefan formalism applied to the LDF approximation) 
predicts considerably lower swelling ratios than the LDF model in the swelling experiment, but 
only slightly lower swelling ratios at the minimum in the shrinking experiment. This may appear 
surprising at first sight, especially recalling that the minima and maxima in the volume change 
data stem from differences in the diffusion rates of the liquids, and considering that the ratio of 

the S,ref

,piD  values of water and HOAc is more than three times larger than that of the 

corresponding S,ref

iD  values (see Table 1). The explanation is that the Maxwell–Stefan model 

accounts for the finite expansibility of the polymer network through the chemical potential of 
the diffusants. 
 
 
Conclusions 
  

Mathematical models for coupled diffusion and reaction in swelling and shrinking 
polymer particles were written without employing the equations of motion. Polymer mass 
coordinates were used as the frame of reference. Two particle diffusion models based on the 
Fick’s law of diffusion and the generalized Maxwell–Stefan approach, as well as two-point 
approximations of these, were compared.  
 

It was shown that diffusion induced swelling and shrinking of ion-exchange resin 
particles is best described with a model based on the Maxwell–Stefan approach because it 
takes the finite expansibility of the polymer network into account. The LDF model predicted 
unrealistically large swelling of the resin.  

 
 
Nomenclature 
 
A cross-sectional area, m2 
a surface area to volume ratio, m–1 
CS resin phase concentration, mol m–3 
D Fickian diffusion coefficient, m2 s–1 

D  Maxwell–Stefan diffusion coefficient, m2 s–1 

 

Table 1. Fickian (
S,ref

iD ) and Maxwell–Stefan (
S,ref

,i pD ) diffusion coefficients at the reference state of 

water and acetic acid in CS16G(H+). Estimated from swelling and shrinking data in Figure 1. 

Diffusant 
S,ref

iD , m
2
 s
–1
 

S,ref

,i pD , m
2
 s
–1
 

Water 3.3·10
–9
 2.6·10

–9
 

Acetic acid 8.5·10
–10
 1.9·10

–10
 

 
 
 

  

 



dp particle diameter, m 
N flux, mol m–2 s–1 
R radial coordinate, m 
Rg gas constant, J mol–1 K–1 
r reaction rate, mol m–3 s–1 
T temperature, K 
t time, s 
Wu  species velocity, kg s–1 

Vm molar volume, m3 mol–1 
W mass coordinate, kg 
Wp mass of a single resin particle, kg 
  

φ volume fraction, – 

µ chemical potential, J mol–1 

ν stoichiometric coefficient, – 

ρm density of the polymer, kg m–3 

θ swelling ratio, – 
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