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1. Introduction 

Reactive extrusion is an important commercial process used for the production and 

modification of a wide variety of polymers and blends (e.g. Ethylene co-polymers, 

Polyamides, etc.). Its primary distinguishing characteristic is that chemical reactions are 

deliberately carried out during continuous melt extrusion to achieve desired product 

properties.  The ever-tightening customer demands on product specs have necessitated 

comprehensive dynamics and control studies of these processes, which, until now, have 

mostly focused on the control of a single variable such as viscosity (Broadhead et al., 

1996). 

The dynamics of the process are determined primarily by the strong interactions 

between the fluid mechanics, reaction kinetics, heat transfer and the extruder geometry, 

making effective control of product quality and end-use properties very difficult [1]. It is 

important to note that the usual challenges associated with the control of conventional 

polymer reactors (e.g. unavailability or low frequency of physical property 

measurements, and frequent grade transitions) are also encountered in the control of 

reactive extrusion. 

  To meet the customer’s demands efficiently, it has become important to develop a 

method for effective control of process variables ‘y’ (melt pressure, melt temperature, 

motor power etc.), product properties ‘q’ (melt index, viscosity, density, etc), but more 

importantly, end-use physical characteristics ‘w’ (toughness, UV/chemical resistance, 

etc.), to guarantee acceptable end-use product performance.  Our ultimate objective is to 

develop such a framework for controlling key product properties and assuring acceptable 

end-use performance.   



 Our approach to this challenging problem is to begin with an adequate 

mathematical representation of the relationships between variables across the entire 

processing chain.  Such a representation will serve two crucial tasks: (i) provide estimates 

of the infrequently measured product properties at a much faster rate, and (ii) facilitate 

the development of a control system to meet the above mentioned objective.   

Fig. 1 shows a schematic representation of the proposed modeling scheme, which 

consists of the following models: i) Muy – a model that relates the manipulated variables, 

u, to process output variables, y, (ii) Muq – a model relating the manipulated variables, u, 

to the internal product quality variables, ,  (iii) Mq̂ qq – a model relating internal quality 

variables, , to product quality variables, q,  (iv) Mq̂ qw – relating internal quality variables, 

,  to end use characteristics, and (v) Mq̂ wz – relating end-use physical characteristics, w, 

to product performance in end-use, zw, a binary variable that represents acceptable 

performance as 1, and unacceptable performance as 0. 

A modeling scheme that relates the different classes of variables sequentially, 

although more intuitive, is impractical in this case. This is because it is usually difficult to 

model the relationships between the process outputs and the measured product quality 

variables, since these variables are based on the measurements, which are selected on 

practical grounds such as the availability of sensor locations, and developing a 

mathematical relationship between these two classes of variables is not straightforward. 

To overcome this problem, an additional class of variables, called internal product quality 

variables ‘ ’ (composition, weight average molecular weight) that constitutes an indirect 

way to link ‘y’ with ‘q’, is introduced in the modeling scheme. 

q̂

 



 

Fig. 1. Proposed modeling scheme 

Our control paradigm is predicated upon using the above network of models for two 

important tasks: (i) to translate the customer requirements on end-use performance to set 

points for process variables, and (ii) to make appropriate modifications (that is, to take 

control action) wherever appropriate along the manufacturing chain based on all available 

information. For this purpose a multivariable cascade control scheme (Fig. 2) is 

proposed, consisting of a fast model-based controller C1 for the inner loop between the 

manipulated variables and the output variables, and a slower (also model-based) 

controller C2, which will translate the end use performance objectives to set points for 

the output variables.  In addition to these loops, there exists innermost basic regulatory 

control loops, which ensures that set point changes in the manipulated variables are 

efficiently tracked. 

 

Fig. 2. Proposed control scheme. C1 and C2 are the inner loop and outer loop controllers 

respectively. 
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This paper is concerned with the modeling of the relationships between process 

manipulated inputs ‘u’ and process output variables ‘y’, specifically for an example 

process involving the reaction of a functionalized ethylene co-polymer, “Elvaloy” 

(Ethylene/n-Butyl Acrylate/Glycidal Methacrylate Terpolymer (E/BA/GMA)) with an 

acid co-polymer “Nucrel” (Ethylene/Methacrylic Acid Copolymer (E/MAA)) in a 

Coperion W&P ZSK-30mm co-rotating, intermeshing twin screw extruder.  Due to the 

complexity of the interacting process mechanisms, first-principles modeling is 

impractical for control at this level.  System identification from carefully obtained 

input/output data is a more practical alternative. 

In this paper, we present a systematic procedure for carrying out the three major 

identification tests for this class of processes: (i) experimental test design and collection 

of input/output data, (ii) model structure and order selection and (iii) model validation. 

Section 2 describes the system inputs/outputs, the data collection and the data 

pretreatment procedure. Section 3 describes the preliminary tests and their use in 

obtaining the information needed for the design of the final test. Section 4 describes the 

design and implementation of the final test. Finally, Section 5 describes the model 

structure and order selection and presents the model validation results.        

2. System Description 

2.1. Process Inputs and Outputs 

The base feed material for the example reactive extrusion system is E/MAA. The 

manipulated inputs for the system are screw speed, E/MAA feed-rate, E/BA/GMA feed-

rate and barrel temperatures for the seven extruder zones. Changes in all the inputs are 

implemented manually. The barrel temperature regulatory controller loop dynamics are 



much slower than the process dynamics excluding the inner regulatory loops. Therefore, 

with the exception of a step change, any other dynamic change in the barrel temperature 

is impractical. The inner loop dynamics for other manipulated inputs are fast compared to 

the process; therefore, more rapid changes in these variables can be implemented.  

The process outputs are die pressure (y1), exit melt temperature (y2), and motor power 

(y3), and E/MAA weight fraction in the melting zone (y4). With the exception of the 

E/MAA weight fraction, which can be easily obtained from the feed-rates of the two 

polymers, all other outputs are measured.  

2.2 Data Acquisition 

A specialized data acquisition system (DAQ) [3] was used to collect the input/output 

data. The DAQ has several key components: 1) a specialized, high-speed data acquisition 

hardware front end for dynamic signal capture, 2) a PC-based experiment monitoring and 

data processing package, and 3) a program to analyze the pulse response and steady-state 

data. The signals are wired to the DAQ front end including motor amperage (or torque), 

motor voltage, screw speed, die pressure and exit melt temperature.  

In the experiments, data scanned at 60Hz were decimated to 20Hz and filtered with a 

3-tap median filter to remove large spikes from the signals. In spite of the filtering, 

significant noise levels remain; therefore, the data were re-sampled at a frequency of 1 

Hz using a moving time-average procedure to improve the Signal-to-Noise Ratio (SNR). 

2.3. Data Pre-Treatment 

In numerous instances, spikes were observed in the data due to severe unmeasured 

disturbances, process upsets and/or sensor failure. These spikes were manually removed 

before performing the estimation.  



3. Preliminary Tests 

The preliminary tests were aimed at obtaining à priori knowledge needed for the 

design of the final identification test. The tests consisted of a series of step changes as 

well as simultaneous staircase changes in the manipulated inputs at two operating points: 

(A) a low melting-zone composition of E/BA/GMA (~ 1%) inducing a low extent of 

reaction and a relatively small change in the product viscosity compared to the viscosity 

of the pure E/MAA feed, and (B) a high melting-zone composition of E/BA/GMA (~ 4 

%) inducing a high extent of reaction and a significant change in the product viscosity. 

This selection of the operating points enabled a comprehensive study of the effect of the 

reaction on the process dynamic behavior. 

Table 1a shows the process gains. The gains differ significantly and in some cases 

have a different sign at the two operating conditions, indicating that the reaction has a 

strong nonlinear effect on the process dynamic behavior. The results suggest that it may 

be necessary to build non-linear models of the process to capture the “reaction effect”. 

Table 1a: Scaled Gain Matrix and RGA 

Scaled Gain Matrix 
 Operating Point A Operating Point B 

O/I u1 u2 u3 u4 u1 u2 u3 u4
y1 -0.0617 0.0711 1.5 0.178 0.16 -0.3 1 0.533 
y2 0.0723 0.04 0.6 0.667 0.125 -0.035 0.35 0.8 
y3 0.75 0.333 0.625 -0.4667 0.381 0.3 0.188 -0.333 
y4 0 0.0205 0.4886 0 0 0.0208 0.4579 0 

 

Relative Gain Array 
 Operating Point A Operating Point B 

O/I u1 u2 u3 u4 u1 u2 u3 u4
y1 0.673 1.957 -1.732 0.102 0.279 0.8349 0.126 -0.239 
y2 0.218 -0.2156 0.136 0.862 -0.0405 -0.07211 -0.0328 1.145 
y3 0.109 0.928 -0.073 0.0363 0.763 0.148 -0.0042 0.0938 
y4 0 -1.669 2.669 0 0 0.0895 0.911 0 

 

 
 



Table 1b: Singular Value Decomposition 
 Singular Value Matrix 
 Operating Point A Operating Point B 
 1.84 0 0 0 1.44 0 0 0 
 0 1.01 0 0 0 0.714 0 0 
 0 0 0.47 0 0 0 0.410 0 
 0 0 0 0.0109 0 0 0 0.135 
 Condition Number(κ) = 169.3 Condition Number(κ) = 10.66 
  

Table 1c: Matrix of Left Singular Vectors 
 Operating Point A Operating Point B 

y1 0.807 -0.201 -0.453 -0.322 -0.807 0.236 0.337 -0.425 
y2 0.368 -0.452 0.810 0.066 -0.539 -0.443 -0.675 0.241 
y3 0.381 0.869 0.314 -0.028 0.048 0.786 -0.602 -0.133 
y4 0.261 -0.011 -0.202 0.944 -0.239 0.361 0.262 0.863 

 

Table 1d: Matrix of Right Singular Vectors 
 Operating Point A Operating Point B 

u1 0.143 0.626 0.685 0.344 -0.124 0.395 -0.633 -0.654 
u2 0.111 0.255 0.214 -0.936 0.188 0.263 -0.615 0.719 
u3 0.977 -0.034 -0.203 0.060 -0.761 0.551 0.263 0.222 
u4 0.115 -0.736 0.666 -0.034 -0.609 -0.687 -0.389 0.077 

 

 
The relative gain array (RGA) of the 4×4 system indicates the potential for strong 

loop interactions when the y’s are controlled using multiple single loop controllers. To 

study the conditioning of the process, singular value decomposition (SVD) of the scaled 

gain matrix was performed. The inputs and outputs were scaled with the maximum 

change introduced and observed respectively for a particular variable. The condition 

number (κ), the ratio of the highest to the lowest singular value, was much higher at the 

operating point A than at the operating point B. The κ values suggest that the process is 

ill-conditioned at the operating point A and that the reaction improves the conditioning of 

the process.  

A characteristic of an ill-conditioned system is that it amplifies input vectors 

differently based on the directions of these vectors. The process directionality is evident 



from Tables 1b, 1c and 1d, at the operating point A, where it is observed that the outputs 

y1 and y2 are weakly dependent on the inputs u1 and u2 and strongly dependent on the 

input u3. Such directionality makes it difficult to identify the low gain direction from 

experimental data. At the same time, the process directionality is important from a 

control perspective since integral controllability criteria require that the identified 

control-relevant model, obtained using the final test, should represent the process 

behavior in the high as well as low gain directions. 

In addition, the information about extent of the process nonlinearity is helpful in 

designing the final tests. For this purpose, staircase tests for the inputs u1 and u2, with 

varying stair-widths, were designed, based on the process time constants. A staircase test 

probes the process dynamic behavior for positive as well as negative changes in the 

inputs and therefore is able to provide information about the process non-linearity [4].  

These tests revealed that the process is approximately linear around each operating point, 

as illustrated in Fig. 2. 

 
Fig.2a: Screw speed staircase test data at operating point A: Inputs, left panels; 

outputs right panels  



 

  
Fig. 2b: Screw speed staircase test data at operating point B: Inputs, left panels; 

outputs right panels  
 
 

4. Final Identification Test 

The design of the final identification test inherently depends on the selected model 

configuration, which is usually based on known process information. For the example 

process, the preliminary tests indicate that the process exhibits significant non-linearity 

and is ill-conditioned at the operating point A.  The non-linear behavior can be captured 

with a non-linear model, such as the NARMAX, Hammerstien, or the Wiener model. It is 

often difficult, however, to represent the process behavior over the full range of operation 

with these structures [5]. Alternatively, the non-linear behavior of a process can be 

represented using a multi-model approach consisting of a global model obtained by an 

interpolation of a series of local models. This approach is particularly suitable for the 

process under consideration because the process behavior at each of the two operating 



points is approximately linear, which facilitates the use of a simple linear model at each 

operating point. 

The final test to identify linear models consists of designing and administering 

suitable input excitation signals.  The choice of the excitation signals used to obtain the 

input/output data is critical for identification. One of the desired characteristics is that the 

signals should be persistently exciting in order to guarantee that a parameter estimation 

algorithm will give a unique solution (see, for e.g., [4]). Generalized binary noise (GBN) 

signals, proposed by Tullenken [6], were selected as the excitation signals for our 

application because they are persistently exciting and are easy to administer. A GBN 

signal switches between the values of –a and a (a being the magnitude of the desired 

change) using a switching probability (psw) based on the following rule 

 
Fig .3a: GBN test data at operating point A: Inputs, left panels; outputs right panels  



 
Fig. 3b: GBN test data at operating point B: Inputs, left panels; outputs right panels  
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As proposed by Zhu [4], GBN signals with a mean switching time equal to 1/3rd of 

the dominant process time constant (~360 s) were used in the final test. In recognition of 

unmeasured disturbances and high measurement noise levels (low signal to noise ratio), 

the duration of the test was approximately 15 times the dominant time constant.  

A significant reduction in the test-duration is obtained by using specially designed 

signals such as GBN instead of conventional step tests. It is, in fact, possible and 

recommended to administer the signals simultaneously in more than one input. Three 

uncorrelated GBN signals were administered simultaneously in the screw speed (u1), 

E/MAA feed-rate (u2), and E/BA/GMA feed-rate (u3) at each operating point (Fig, 3). 



The uncorrelated signals are suitable for identifying a well-conditioned process as well as 

for identifying the high gain direction of an ill-conditioned process, but not the low gain 

direction. Many authors have, instead, suggested the use of highly correlated signals for 

identifying the low gain direction (at the operating point A).  

An additional test, based on the open loop design suggested by Zhu [4], was used to 

identify the low gain direction of the process at the operating point A.  The GBN signals 

(Fig. 4), which have correlated high amplitude periods combined with uncorrelated low 

amplitude periods, were administered only to the inputs u1 and u2, while the input u3
 was 

unchanged.  The low amplitude was set at one-third the value of high amplitude. 

 

Fig. 4: Experimental data from the test for identifying the low gain direction at the 

operating point A: Inputs, left panel; outputs, right panel 

 



5. Model Structure  

The multi-model approach entails the identification of a separate model for distinct 

regions, known as premise regions [5], in the input/output variable space. The regions are 

defined by premise variables, which are quantitatively related to the input variables (and, 

sometimes, the output variables). The premise variable used for the process under 

consideration is the E/BA/GMA weight fraction (y4) in the melting zone. Three premise 

regions are defined as follows: (I) 0 % < y4 < 1.5%, (II) 1.5 % < y4 < 3.5%, and (III) 3.5 

% < y4 < 5%.  The global model is obtained by interpolating between local models with 

sigmoidal membership functions that assign weights to the outputs of the local models to 

generate the global model output as:  
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In these equations, a and c are the constants that determine the shape of the sigmoid. 

Since the process exhibits approximately linear behavior in the premise regions I and III, 

a linear model was identified for each of these regions. In these regions, the selected 

membership function, therefore, assigns a weight ‘1’ to the corresponding model output 

of a particular premise region and a weight ‘0’ to the model output of the other region. 

The membership function for region II is combination of two sigmoids, each having an 

inflexion point at the y3 value of 2.5% (Fig. 5). 



 

Fig. 5 Sigmoidal Membership Functions 

The candidate linear models for regions I and III consists of the following models:  

(1) Autoregressive with exogenous inputs (ARX) 

(2) Autoregressive moving average with exogenous inputs (ARMAX): an 

extension of the ARX model to include a “moving average” disturbance model.  

(3) Box-Jenkins (BJ): provides a complete model with disturbance modeled 

separately from the system dynamics. 

The general (SISO) structure of these parametric models is as follows 

1
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For the ARX model, both multi-input multi-output (MIMO) as well as multi input 

single output (MISO) formulations were selected as the candidate models, whereas for 

ARMAX and BJ models only MISO formulations were selected. The parameter 

estimation was performed using the System Identification Toolbox of Matlab®. The 

criteria used for comparing the model structures and selecting model orders were: (i) 

percentage of output variation that is reproduced by the model, (ii) Akaike’s final 

prediction error, and (iii) pole-zero diagrams to check for over parameterization. 

We encountered estimation problems for MIMO formulations of ARX and MISO 

formulations of ARMAX structures. The MISO BJ structure provided the best fit and the 

smallest final prediction error compared to other MISO formulations. Table 2 shows the 

best fit MISO BJ model orders.  

 

Table 2: Identified Box Jenkins Structures 

Operating Point A 

 MISO Model Orders Delay (nd1, nd2) 

O/I u1 
(na,nb) 

u2 
(na,nb) 

u3 
(na,nb) 

Noise 
(nc,nd)

u1 u2 u3

y1 5,5 5,5 5,5 2,2 0,0 0,0 0,0 

y2 5,5 5,5 5,5 1,1 0,0 0,0 0,0 

y3 3,3 3,3 3,3 0,0 0,0 0,0 0,0 

y4 0,0 2,2 2,2 1,1 0,0 0,0 0,0 



 

Operating Point B 

 MISO Model Orders Delay (nd1, nd2) 

O/I u1 
(na,nb) 

u2 
(na,nb) 

u3 
(na,nb) 

Noise 
(nc,nd)

u1 U2 u3

y1 5,5 5,5 5,5 3,3 1,1 1,1 1,1 

y2 4,4 4,4 4,4 1,1 0,0 0,0 0,0 

y3 3,3 3,3 3,3 1,1 0,0 0,0 0,0 

y4 0,0 2,2 2,2 1,1 0,0 0,0 0,0 
 

 

5.1. Model Validation  

The validation data consists of a fraction of the final test data that was not used for 

estimation, in addition to the preliminary test data. Some of the results are presented 

below. Fig. 6 shows a comparison between the model response and the experimental data 

for the experiments conducted at the operating point A; Fig. 7 shows the same 

comparison for the experiments conducted at the operation point B. The linear models are 

successfully able to represent the important process dynamics at the corresponding 

operating point. 



 

     Experimental Data 
     Model Response 

Fig. 6a: Die Pressure: Response to Step change in screw speed from 180 to 220 RPM  
 

 Fig. 6b: Exit Melt Temperature: Response to step change in screw speed from 180 to 
220 RPM 

     Experimental Data 
     Model Response 



 

     Experimental Data 
     Model Response 

Fig. 6c: Motor Power: Response to step change in screw speed from 180 to 220 RPM 
 

 

     Experimental Data 
     Model Response 

Fig. 7a: Die Pressure: Response to E/MAA feed-rate step change from 22 to 18 lbh 



 

     Experimental Data 
     Model Response 

Fig. 7b: Exit Melt Temperature: Response to E/MAA feed-rate step change from 22 to 
18 lbh 

 

     Experimental Data 
     Model Response 

Fig. 7c: Motor Power: Response to E/MAA feed-rate step change from 22 to 18 lbh 



6. Summary and Conclusions 

A modeling framework has been proposed for effective control of the product end-use 

properties of a reactive extrusion process. The modeling framework consists of a network 

of models that mathematically represent the relationships between the different classes of 

variables across the manufacturing chain. For practical reasons, it was essential for this 

scheme to introduce an additional class of unmeasured variables called as internal quality 

variables. The proposed multivariable cascade control scheme will then use this network 

of models, in addition to all the available measurements, to guarantee acceptable end-use 

performance.   

An empirical model that relates the manipulated inputs, u, and the process outputs, y, 

is an important component of the modeling scheme.  A systematic two-stage procedure is 

implemented to obtain the input/output data used to develop this model; in the first stage, 

preliminary tests, such as step tests, are used to obtain à priori information, which is then 

used to design and implement the final identification tests in the second stage.  

A multi-model structure consisting of the local linear models was a natural outcome 

of the preliminary test results. The Box-Jenkins parametric model structure was found 

suitable for local linear models. It should be noted, finally, that a non-linear model 

structure could have been used instead of the multi-model structure; however, this 

requires a costly and complicated test design.  The multi-model structure, on the other 

hand, was obtained from relatively simple tests.  
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