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Many fundamental biological processes exhibit oscillatory behavior. Prominent examples are the cell 
cycle, circadian rhythm generation, the heart beat, and cAMP and Ca2+ oscillations in neurons. Some 
oscillatory biological systems provide functions that a static system cannot provide, such as gating 
mechanisms [1]. Oscillations in signaling molecules are hypothesized to encode more information than 
possible in a non-oscillatory signal [2]. Other systems show individual, fascinating properties, for 
example the astonishing robustness of the period of the circadian system in constant darkness 
conditions, or in different temperature ranges [3]. Several of these processes have been studied 
extensively, and have been modeled using ordinary differential equations (ODEs) to different levels of 
mechanistic detail. These dynamic models provide an opportunity to investigate the complex 
interactions of the different molecular players. One of the most popular methods for such studies is 
sensitivity analysis. The influence of model parameters and initial conditions on features of the dynamic 
behavior of the system can be determined. Sensitivity analysis of biological oscillatory systems is 
challenging due to several characteristics of their sensitivity functions: First, the most commonly 
modeled biological systems are limit cycle oscillators [4]. Independently of the initial conditions, such 
systems asymptotically approach a limit cycle, whose shape is determined by the model parameters 
only. Clearly, it is the limit cycle trajectory which is of interest for parametric sensitivity analysis. We 
wish to determine the influence of the model parameters on limit cycle features such as period and 
amplitude of the oscillation. The asymptotic behavior of limit cycle systems creates transients in the 
sensitivity functions, which will only decay after several (~30) periods, unless we provide a way to find 
initial conditions that lie on the limit cycle trajectory and initialize the parametric sensitivities 
accordingly. A second obstacle concerns the derivation of sensitivities for limit cycle properties: the 
sensitivity trajectories of the state variables (the concentrations in the biological model) with respect to 
the parameters grow in an unbounded fashion. It is necessary to process these sensitivities in such a way 
that allows separation of the (bounded) influence of the parameters on amplitude and phase of the 
system, from the (unbounded) influence of the parameters on the period. Previous work in the area relies 
on simulating the dynamic system starting from arbitrary initial conditions, until the limit cycle is 
reached to some tolerance [5,6]. The parametric sensitivities are determined at this point, assuming the 
transient contributions are negligible. Since it can be shown that the unbounded sensitivity functions 
grow linearly in time, a periodic function can be derived which relates sensitivities at a given time to 
those at one period before. This derived function is used to determine the sensitivity of the period with 
respect to the parameters [5,6].  

We have developed a boundary value formulation for the sensitivity problem, which allows us to 
determine initial conditions for the state variables as well as for their sensitivities with respect to the 
model parameters. Those initial conditions are a point on the limit cycle, rather than asymptotically 
approaching it. Consequently, transient terms are avoided, and an exact solution can be calculated after 
one period of oscillation. Previous work in the area provided such a method, limited to systems with 
second order dynamics [7]. The present work extends those results to general, oscillating systems, such 
as those present in models of biological oscillators. We are able to separate the bounded and unbounded 
terms exactly, and can calculate exact parametric sensitivities for derived functions such as period and 
amplitude of the oscillation, rather than approximations from truncations of asymptotic processes, as in 
earlier works. Besides their use in sensitivity analysis itself, exact sensitivities are needed for the 
analysis of complex systems using optimization techniques. Optimization techniques can be very useful 
tools to investigate parameter dependencies of features of biological networks on a more global scale, 
especially when experimental data on the true parameter values is scarce. We applied the method on 
model systems of different sizes: A small and simple model for the circadian clock in Neurospora crassa 



shows some of the interesting characteristics of the circadian system, such as temperature compensation, 
temperature entrainment and phase responses to different stimuli [8]. A more detailed model of the 
mammalian circadian clock [9] can also be analyzed efficiently. Sensitivity analysis proves a tool for 
understanding how network characteristics are encoded in the biological system.  
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