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Introduction 

When performing molecular dynamics simulations one attempts to model accurately a large system 
using a relatively small (at this time, generally less than a million) number of molecules.  It is of course 
the hope that the simulation results will directly correspond to experiments on a similar, but 
macroscopic, system.  One way to verify the validity of molecular-level simulations is to show from a 
theoretical point of view that the trajectories, i.e. the positions and momenta of the particles as a function 
of time, generated by a particular algorithm, rigorously correspond to the appropriate statistical 
mechanical ensemble. 

For molecular dynamics (MD) simulations in the microcanonical (NVE) ensemble, a well-accepted and 
straightforward algorithm exists.  In the canonical (NVT) ensemble, a rigorous MD algorithm known as 
the Nosé-Hoover thermostat exists, which introduces an extended system containing a thermostat [1, 2].  
While it is well known that the Nosé-Hoover thermostat rigorously generates trajectories in the NVT 
ensemble in the absence of external forces, there is still much discussion as to rigor of the algorithm in 
the presence of external forces.  In the isobaric-isothermal ensemble (NpT), the story is not so clear.  
There are numerous NpT algorithms in the literature with varying degrees of rigor [2-10]. 

One of the main differences in the history of the development of NVT and NpT algorithms is that the 
derivation of the well-accepted and rigorous NVT algorithm (the Nosé-Hoover thermostat) started with 
a Hamiltonian of Nosé.  Relying on the canonical (i.e. symplectic) nature of the Hamiltonian, the 
equations of motion are unambiguously determined.  Nosé proved this algorithm rigorously generated 
trajectories in the NVT ensemble.  Hoover then added his contribution by providing a non-canonical 
transformation from the mathematical frame of reference to a more physical frame of reference in which 
analysis of the MD results is straightforward.   

In 1984, Nosé provided an NpT Hamiltonian, but did not express the equations of motion in terms of the 
physical variables [3]. However, for whatever reason, from there the development of NpT algorithms 
took a very different path.  The modern NpT algorithms do not possess a Hamiltonian.  The starting 
point of their derivation is simply a presumed form of the equations of motion.  Recently, Tuckerman et 
al. introduced a methodical procedure based in the statistical mechanics of non-Hamiltonian systems 
that allows one to determine the rigor of various published NpT algorithms [11, 12].  They found that 
the NpT algorithm of Martyna et al. [5] satisfied their criteria for rigor, while the NpT algorithms of 
Hoover [2] and that of Melchionna et al. [4] were not rigorous.  Curiously they did not test Nosé's NpT 
algorithm [3], which predates all of the other algorithms. 

This paper has two purposes.  The first purpose is to demonstrate that following the same methodical 
procedure that was used by Nosé and Hoover to develop a rigorous algorithm for MD simulation in the 
NVT ensemble, one can also generate a rigorous algorithm for MD simulation in the NpT ensemble.  
This process starts with a Hamiltonian, namely Nosé's 1984 NpT Hamiltonian [3], and includes a non-
canonical transformation from the mathematical system to the physically meaningful system.  We prove 
that the algorithm is rigorous in the NpT ensemble.  To our knowledge, our NpT algorithm is different 
than any other NpT algorithm published to date. 

The second purpose of this paper is to address the problem associated with simulation in the NVT, NpT, 
and NpH ensembles in the presence of external forces (or when the total linear momentum is non-zero).  



We present a procedure for a systematic Hamiltonian-based development of rigorous MD algorithms in 
the presence or absence of external forces.  We then use this procedure to develop rigorous algorithms 
for the NVE, NVT, NpT, and NpH ensembles.  The resulting algorithms are new. 

Results and Discussion 

Our family of algorithms for MD simulation in the NVE, NVT, NpT, and NpH ensembles is completely 
general.  Each is valid in the absence or presence of external forces.  Each is valid regardless of the 
conservation of total linear momentum.  Our family of algorithms is also completely rigorous.  
Following Nosé, using the statistical mechanics of Hamiltonian systems, our algorithms rigorously 
generate trajectories in the appropriate ensemble.  We also show that, following Tuckerman, and using 
the statistical mechanics of non-Hamiltonian systems, our algorithms rigorously generate trajectories in 
the appropriate ensemble.   

Our family of algorithms is completely self-consistent.  By self-consistent we mean that the NpT 
algorithm is the most general algorithm.  The other algorithms are subsets of the NpT case; we have an 
NVT algorithm when the barostat is turned off, an NpH algorithm when the thermostat is turned off, and 
an NVE algorithm when both the thermostat and barostat are inactive. 

Our family of algorithms is consistent with previously existing rigorous algorithms.  For example, in the 
absence of external forces and when the total momentum is initialized to zero, our NVT algorithm 
reduces to the Nosé-Hoover thermostat.  Thus, we identify the two limiting constraints in order for the 
Nosé-Hoover thermostat to be valid.  However, our generalized algorithms are rigorous regardless of 
whether these constraints are satisfied.  As another example, our NpT algorithm reduces to the same 
equations of motion as Nosé's NpT algorithm, again under a set of constraints. 

In short, using a Hamiltonian-based approach, we have derived rigorous algorithms for MD simulation 
in the NVE, NVT, NpT, and NpH in the presence or absence of external forces.  Moreover, we have 
provided a methodical procedure to derive these equations, which can also be used to derive 
nonequilibrium MD algorithms. 

Finally, because our NpT algorithm is different than the NpT algorithm of Martyna et al., we discuss the 
validity of the two algorithms.  Our NpT algorithm satisfies both the Hamiltonian and non-Hamiltonian 
criteria for rigor.  The NpT algorithm of Martyna et al. satisfies only the non-Hamiltonian criteria for 
rigor.  We discuss the uniqueness of extended algorithms. 
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