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Abstract 
Globalization and resulting competition necessitate companies to invest continually on 
technological upgrades and projects for their sustained economic growth. These projects 
invariably compete with each other for limited resources such as budget, time, workforce, 
materials, facilities, and equipment. Complex interactions among projects arising due to limited 
resources and the desire to reduce the time to market make it extremely difficult for the 
decision-makers to select the best portfolio of projects, and to schedule their activities 
optimally. In this paper, we propose a simple zero-one mixed integer linear programming 
model for simultaneous portfolio selection and task scheduling with the objective of maximizing 
the net present value of the portfolio. To make the model practical, we incorporate several 
realistic features such as renewable and non-renewable resources, outsourcing, project delay 
penalties, inter-project relationships etc. Finally, we assess the performance of our model 
using a few examples from the literature. 
 
INTRODUCTION 
Multi-task projects routinely arise in many industrial sectors and require scheduling. Some 
examples are: construction and other infrastructure-related projects (Kolisch, 1995), water 
management (Vanhoucke and Demeulemeester, 2003), airline maintenance and repair 
(Dickinson et al., 2001), chemical plant maintenance (Kelly, 1961), health (Badri et al., 2001), 
textile dyeing (Bowers et al., 1996), pharmaceuticals (Blau et al., 2003), and missile 
development (Malcolm et al., 1959). In chemical industry, two different types of project usually 
arise: Process-related and Product-related. With respect to product, projects such as 
portfolio/pipeline management, product improvement, quality improvement etc are quite 
common. Similarly, process-related projects such as retrofitting, energy optimization, waste 
reuse/minimization, productivity improvement, debottlenecking, and so on invariably exist in 
almost every chemical plant. 

 
Project management is the allocation of knowledge, skills, tools, and techniques to 

various tasks in order to meet or exceed stakeholder needs and expectations from a project. 
Managing a set of projects typically requires three broad phases. The first phase (requirements 
definition) is indispensable for selecting and managing the projects. The data involve the types 
and quantities of available resources; resource requirements of the various project activities; 
nature of activities, their durations, and possible time windows for execution; technological 
precedence relationships among project activities; optimistic and pessimistic estimates of the 
uncertain revenues generated by the completed projects; and the organizational strategic 
goals. Extensive information is normally available only after detailed design and engineering. It 



is practically impossible to gather accurate information due to time and budget constraints 
during the project selection phase. The second phase (planning) involves the selection and 
scheduling of projects to meet a pre-specified goal in the best possible manner without 
violating any resource constraints. The scheduling entails the allocation of resources and 
suitable start/end times to the activities of each selected project. Due to the limitation on the 
accuracy of details on the ‘resource constraints’ at this phase, scheduling is normally done 
based on the best-possible information. The final (implementation) phase of the project 
management deals with the execution, monitoring, and control of the plan obtained in the 
second phase. 

 
The selection of projects is a crucial and complicated decision-making process to any 

organization. There could be multiple and conflicting objectives for the selection process with a 
high degree of interdependence among the projects. In addition, constraints in the form of 
budget, workforce, and equipments further complicate the decision process. Thus, scheduling 
must be carried out during the selection process so that the selected projects can be realized 
under resource constraints. Furthermore, several realistic features such as outsourcing, 
renewable and non-renewable resources, and penalties for delayed completion should be 
given due consideration while making selection decisions. Most real-life project-selection 
problems often have huge number of feasible solutions and thus become intractable. However, 
greater computing capabilities combined with new solution techniques allow us to solve 
complex formulations that were formerly intractable. In this paper, we address the above 
important problem and present a holistic approach that integrates the selection process and 
resource-constrained scheduling of multi-task projects. We begin with a problem statement 
and then present the mathematical model. Later, we present the linearized formulation and 
then a few examples to illustrate the performance of our model. Finally, we make some 
concluding remarks. 

 
PROBLEM STATEMENT 
We model project as a set of interrelated tasks and suitable work units. Resources required for 
the project tasks can be either renewable or non-renewable. A resource is renewable, if its use 
does not destroy it. Once released by one task, it becomes available for reuse by another task. 
Typical examples of renewable resources are labor and machinery. Non-renewable resources 
are those that are not replenished after use. Once a part of it is used, that part is not available 
for use any longer. Capital budget is a typical non-renewable resource. The resource 
availability and usage restrictions may vary with time. In addition to these resource constraints,  
project selection is also impacted by several factors such as outsourcing options, penalties for 
delayed completion, and other inter-project considerations such as precedence relations, etc.  

 
Let L denote the set of potential projects. Each project l ∈ L involves a set Il of tasks 

(or activities). Let I denote the set of all tasks. Each task i ∈ I (i = 1, 2, …, N) requires a 
duration di, incurs a cost Ci, and yields a return Ri. We assume that all costs occur, when the 
task begins, and all returns occur, when the task ends. The tasks are related by some 
precedence constraints denoted by a set H, where (m, n) ∈ H means that task m must precede 
task n. 

 
A task may consume two types of limited, shared resources: renewable and non-

renewable. Resource is any asset that is required to perform a task. The limitations on the 
resources and the resource requirements of each task are fixed and known a priori. We view 



the scheduling horizon to consist of multiple periods across which the resource availability 
levels may vary. A task i can be outsourced at a cost iC . If outsourced fully, the task does not 
consume any internal resources and requires duration id  for its completion. 

 
We consider several features that the past literature does not. Other than the 

precedence and resource constraints, an important issue relates to the returns or revenue from 
a project. Most often, an industrial project may not yield any revenue before it is completed, so 
it is natural to consider that each project generates some cash on its completion. However, in 
some development projects, completion of certain tasks may also generate revenues. 
Therefore, we allow revenue generation at the end of each task. The objective is to select the 
portfolio of projects, and to schedule all their tasks such that we get the maximum NPV. 

 
The project planning may involve two scenarios, deterministic and probabilistic. In the 

former, all data (e.g., task durations, task revenues, resource requirements, etc.) are 
deterministic and known a priori. The tasks always reach their logical ends (i.e., no failures), as 
long as they get the required resources. On the other hand, in the stochastic scenario, a task 
may fail to end successfully, in spite of getting all the required resources. Such a failure may 
even cause the abandonment of the corresponding project. Furthermore, the data such as task 
durations, resource levels, etc. may follow stochastic distributions with known means and 
variances. Real-life projects are rarely deterministic in nature. However, it is important to study 
the deterministic scenario, because its simplicity helps in enhancing our understanding, and 
the deterministic scenario in many cases forms the basis for solving the stochastic scenario. 
Furthermore, often the variances in various project-related data are too small to warrant a 
complex stochastic scenario. 

 
The project scheduling problems typically aim to minimize costs, while the project 

selection problems typically maximize revenue. However, in some projects that involve build, 
buy, make, or modify decisions as in a Baye’s decision tree problem (Canada et al., 1996), the 
selection aim could be to either maximize revenue or minimize costs. Often, the objective is to 
minimize the makespan (or the total time to complete all tasks). The rationale for this objective 
is the fact that the majority of the income occurs at the end of a project, and thus the early 
finish of a project reduces the amount of tied-up capital and resources. Furthermore, since the 
quality of forecasts tends to deteriorate over time, finishing a project as early as possible would 
lower the probability of completion delay. In addition to these three objectives, the literature 
also includes the minimization of the mean flow time of the tasks and the maximization of 
resource usage. However, we feel that none of these objectives captures the costs and 
revenues together as effectively as the maximization of the cash flows. If a project runs for a 
long period, then it is imperative to consider the NPV of discounted cash flows including the 
effects of interest and inflation rates. 
 
MILP FORMULATION 
We use a discrete-time representation with uniform slots or periods denoted by t = 1, 2, … 
Tasks can start or end only at the start/end of a slot, and not halfway within a slot. First, we 
define two binary variables: 

Xit = ⎧⎨
⎩

1 Task  completes at the end of slot 
0 otherwise

i t
 



zi = ⎧⎨
⎩

1 Task  is done in -house
0 Task  is outsourced

i
i

 

We now develop a mixed-integer linear programming (MILP) formulation using the above 
variables. 
 
Task precedence relationships 
The precedence relationships among tasks may arise due to various reasons. The tasks of a 
project may also have some precedence relations that would affect their start and end times. A 
task n cannot begin, until its entire preceding tasks m end. We ensure this by, 
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Renewable resources 
For respecting resource limitations, we essentially use the simple approach suggested by 
Doersch and Patterson (1977). It uses discrete time slots, and treats the resource entities of 
one type as one aggregate rather than individual entities. This is unlike the continuous-time 
slot formulation used Jain and Grossmann (1999). Moreover, in this approach, the time 
coordinates are unique too. In contrast, Jain and Grossmann (1999) use two separate 
coordinates to handle the resource assignment, one from the task perspective and the other 
from the resource perspective. 

We first consider the case of time-independent resource availabilities. Let Rk denote 
the number of available units of resource type k at any time, rik denote the number of resource 
units of type k required for by task i, and q represent another index for time-slot. Note that this 
resource requirement and availability are only for one slot. Resource is generally required as 
long as the task runs. The following resource constraint (Doersch and Patterson, 1977) applies 
for an in-house task i. 
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A fully outsourced task does not consume any internal resources, so no resource constraint is 
needed. However, the outsourcing of a task may also be partial. If it is so, let ikr′  represent the 
amount of internal resource of type k consumed by a task i that is partially outsourced. For a 
fully outsourced task, ikr′  = 0. Then, we generalize eq. 2 as: 
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Let us now assume that the resource consumption by a task depends on the time slot 
at which it is executed and the availabilities of the resources do the same. Both the 
consumption and resource availability levels are deterministic and known a priori. Let rikt and 
iktr′  represent the amounts of internal resource of type k consumed by task i, when task i ends 

in slot t for in-house and outsourced completions respectively, and let Rkt denote the number of 
available units of resource of type k during period t. Then, the resource limitation for partial 
outsourcing is:  
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Non-renewable resources 
Non-renewable resources are easier to handle than the renewable ones, as they depend only 
on task and not time. In the event that demand exceeds the resource availability, some tasks 
may be outsourced. Let γip denote the number of units of resource type p required for task i, 
and ρp denote the number of units of resource type p available. Since resources are required, 
as long as the task is executed. 
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As done for the renewable resources, we can allow partial outsourcing. Let ikγ ′  
represent the amount of internal resources of type p consumed for a task i that is partially 
outsourced. Then, eq. 3 generalizes to: 
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where, ei is the earliest slot in which task i may end, and li is the latest.  
 
Task non-preemption 
Like most work on project scheduling, we assume that a task, once begun, must complete 
uninterrupted, i.e. it cannot be terminated prematurely. If a project is not in the optimal 
portfolio, then its tasks may never commence. Thus, a task can be terminated at most once, or  
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Although the above suffices for a feasible solution of our model, we can tighten the 
formulation by adding some more constraints. We know that if a project is in the portfolio, then 
the schedule must include all its tasks. Thus, if we execute even one task of a project, then we 
must execute all its tasks. In other words, 
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Inter-project considerations 
In a multi-project scenario, some projects may be related in some manner, which may affect 
the optimal project portfolio. These relations could be as follows. 

1) Mutual Exclusiveness: Two projects are termed mutually exclusive, when the 
acceptance of one (or more of the projects) prevents the company from accepting the other. 
Limitations on the capital outlay or the desire to spread the clientele portfolio may restrict 
companies from accepting projects that may otherwise be profitable. Let L′ be a subset of L. 
Let it be required that no more than λ (λ ≤ |L′|) projects can be selected from L′, where |L′| is 
the cardinality of set L′. Then, the following constraint can impose the mutual exclusiveness 
requirement. 
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If λ projects must appear in the portfolio, then eq. 6 would be an equality. 
 

2) Contingency: Two projects are termed contingent, when the acceptance of one 
mandates the acceptance of the other in the optimal portfolio. If l′ and l″ (∈ L) are two projects 
such that l′ is a prerequisite to l″, then this relationship can be modeled by, 
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If a project l″′ is contingent on two projects l′ and l″, then we use the following constraint: 
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3) Complementarity: Two projects l′ and l″ are termed complementary, when the 

selection of l′ favorably influences the cash flow of l″. Selecting l′ and l″ together may imply 
some additional cash flow (gain or loss). Such relationships can be addressed by adding a 
third project l″′ that represents the simultaneous selection of l′ and l″. Now, we can select only 
one of l′, l″, and l″′ in the portfolio. This gives us the following constraint: 
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NPV calculation 
We consider costs as negative cash flows and returns as positive cash flows. Cash flows 
measure the attractiveness of a project. Cost and resource considerations play an important 
role. Sometimes, it may be beneficial to complete a project within its due date by outsourcing 
some of its tasks. Even though an outsourcing option may not always be cheaper, it will 
provide a significant advantage by freeing the internal resources for other tasks. Likewise, 
acquiring an existing technology from the market rather than developing it in-house may also 
be profitable in some cases and provide advantage. Of course, outsourcing and acquisition 
options may not always be possible due to the sensitive nature of some projects. 

 
We define ci as the net cash flow on the normal, in-house completion of a task i. In 

terms of the costs and returns associated with task i, 
ci = Ri – id

iC e
α  

where, α is the discount factor. Similarly, the net cash flow ic  for an outsourced task i is: 

ic  = Ri – id
iC e

α  
Then, the net cash flow due to the tasks is: 
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Note that the above expression involves the product of two binary variables, but we linearize it 
later. 



In addition to the costs and returns, we may wish to associate some penalty for the 
delay in project (or even tasks within the project) completion. We should subtract such 
penalties from the net cash flow of eq. 10. A delay in project completion may actually reduce a 
project’s returns. This is particularly true for R&D projects for new products or processes. 
When a competitor is working on a similar project for a new product or process, the delay in 
completion of the project complicates the matters further. As for the life cycle, the periodical 
revenues for a new product or process, when plotted versus time, can be approximated as a 
rough trapezium. For technology-sensitive products and processes, life cycle is shorter and 
resembles a triangle, i.e., the growth of market capitalization decelerates shortly after reaching 
the peak. 

 
A cumulative penalty for the delay can be approximated as a linear function of the 

number of periods by which the task completion is delayed. Penalty cost per day represents 
the slope of this linear function. At a certain threshold, when a competitor launches a similar 
new product or process, the competitor gains the first-move advantage and is likely to cut the 
market size for our delayed product or process. The loss (or penalty) in this case can still be 
approximated by a linear function; the slope (or penalty per day) would increase at an 
accelerating rate. Such an increase in penalty is expected even with the launch by the second 
and subsequent competitors and beyond a point when the growth rate of market capitalization 
begins to fall. In essence, the cumulative penalty can be nearly approximated as a piecewise 
linear function. Sometimes, it may be desirable to complete the project earlier than its due-date 
as there might be an incentive attached to the early finish in the form of intruding successfully 
into the competitors’ markets. However, in our model, we do not consider such an incentive at 
this time. 

 
Jain and Grossmann (1999) suggest a piecewise linear function to compute the delay 

penalty. However, we use a slightly different approach for the same in our model. Let g denote 
the segments in the piecewise linear approximation. For a project l, let the per-period penalty 
and the actual penalty on segment g be πlg and ylg respectively. If the terminal task in project l 
is Nl, and the break points in the piecewise linear function are ulg, then 
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ylg ≥ 0 ∀ l, g (11b) 
Equation 11b ensures that no negative penalty is imposed, when t < ulg. With this, the objective 
for the portfolio is to maximize: 
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If an incentive for the faster completion of projects does exist, we can add terms similar to 
those in eqs. 11a,b in the above NPV. 

 
Several equations (2a, 3a, 12, etc.) in our model involve bilinear terms (Xitzi). We now 

linearize these to get a mixed-integer linear programming formulation (MILP). 
 



LINEARIZED FORMULATION 
An easy method of linearizing is to use a single binary variable with one more index to 
represent the option of outsourcing. For this, we can replace the two 0-1 variables, Xit and zi, 
by a single variable Xiot, where index o represents the option of outsourcing. o = 0 stands for 
in-house completion, and o = 1 stands for outsourcing.  Thus, Xiot is one, if task i is outsourced, 
and completes at slot t. This idea of linearizing is simple, but not efficient. It doubles the 
number of binary variables and can slow the model performance significantly. 
 

Alternately, we use continuous 0-1 variables that we force to be binaries by using 
additional constraints. To this end, we define two 0-1 continuous variables as follows: 

itw′  = Xitzi = ⎧⎨
⎩

1 if task , done in -house, completes at slot 
0 otherwise

i t
 

itw′′  = Xit(1–zi) = ⎧⎨
⎩

1 if task , outsourced, completes at slot
0 otherwise

i t
 

From the above definitions, we get,  
Xit = itw′ + itw′′  ∀ i, t = ei, li (13) 

For a task to complete during slot t and be done in-house, Xit = zi = 1, so, 
itw′  ≥ Xit + zi – 1 ∀ i, t = ei, li (14) 

If a task i is done in-house, then it must complete during its allowable time, i.e.,  
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Then, the portfolio NPV in terms of the new variables becomes: 
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1 1

i i

i i

l lN N
t t

i it i it lg
i t e i t e l g

c e w c e w yα α− −

= = = =

′ ′′+ +∑∑ ∑∑ ∑∑  (16) 

 
There is no change in eq. 1, which corresponds to the precedence relationships. 

However, eqs. 2a and 3a in the light of new variables become linear as follows: 
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Other constraints in the formulation remain unchanged. With this, our MILP formulation 

for the portfolio planning and project scheduling comprises eqs. 1, 4-9, 11a,b, and 13-18. It is a 
general model that allows several features not considered by the previous work on this 
problem. It also represents a holistic attempt to address both the portfolio selection and project 
scheduling simultaneously. We now consider several diverse examples from the literature to 
evaluate the effectiveness of our model. 
 
EXAMPLES 
In the absence of real industrial data, we adopt a few examples from the literature to assess 
the performance of our model. In many literature examples, including the Patterson’s data sets 



(Davis and Patterson, 1975), task costs for both in-house completions and outsourcing, and 
project revenues are absent. For such examples, we assume some numbers for task costs, 
project revenues, and delay penalties. Since we are not considering task failures in this paper, 
we assume that each task succeeds, provided it gets sufficient time and resources.  
 
Jain and Grossmann (1999) problem set  
The work of Jain and Grossmann (1999) addresses testing in the new product development 
process. The examples are quite comprehensive, but use only three projects (products P1, P2, 
and P3) with ten tasks each. Product testing requires resources in the form of four laboratories 
of different types. Thus, there are four types of resources with the availability of one for each. 
We used CPLEX 7.5 in GAMS (Brooke et al., 1998) on a HP x4000 workstation to solve all 
problems. 
 

We take the four combinations [(P1, P2), (P1, P3), (P2, P3), and (P1, P2, P3)] of two 
and three projects with distinct revenues, and select and schedule the projects that maximize 
the NPV for each combination. Since there are shared resources, we must consider the 
resource constraints. Here the objective is to minimize cost. This problem is identical to the 
problem solved by Jain and Grossmann (1999) without the consideration of activity failures. 
The duration of the scheduled projects are up to 600 days and the outsourcing of activities is 
common in projects with more number of activities. The computational times for optimal 
solution varied widely and the most difficult problem took less than 6000 CPU s.  

 
In order to assess the performance of our models on general problems, we also used 

a set of more than 100 benchmark data sets (Davis and Patterson, 1975) for the evaluation of 
resource-constrained project scheduling heuristics. 

 
Patterson (Davis and Patterson, 1975) problem set 
The main features of the problems in this data set are precedence relations and renewable 
resources. The original problem set (Davis and Patterson, 1975) has the details of renewable 
resources, task durations, and precedence relationships. We added arbitrary values for the 
consumption of non-renewable resources and their availability, project revenues, delay 
penalties, and other costs for individual tasks in the first six problems, and employed them to 
evaluate the performance of our model. We assumed an in-house cost for each task, and took 
its outsourcing cost as twice the in-house cost. Lastly, we assumed the presence of non-
renewable resources in some examples. From the previous subsection, we know that the 
present problem becomes more difficult, when more projects are selected for scheduling. 
Thus, to offer more challenging problems to our model, we assumed high project revenues to 
facilitate the selection of more projects. 
 

We consider a set of six potential, independent projects (Pat1, Pat2, Pat3, Pat4, Pat5, 
and Pat6) that use three categories of resources and have 14, 7, 13, 22, 22, and 22 tasks 
respectively. Incidentally, the structures of Pat4, Pat5 and Pat6 are similar. We generate 
several examples involving various combinations of the six projects to test our model. First, we 
schedule each individual project with the objective of minimizing cost. Then, we progressively 
increase the number of projects under consideration. We have the most complex scenario, 
when all six projects compete for selection. For all examples, we assume a sufficiently long 
planning horizon, sometimes as high as 500 time units. If an example requires a makespan 
close to 500 units, then we extend the planning horizon further to observe its effects. Similarly, 



when solving problems with multiple projects, we estimate the planning horizon based on the 
makespan for the known maximal subset of projects considered previously. For instance, while 
considering Pat1-Pat4, we add the makespans for Pat1, Pat2, Pat3, and Pat4 as the first 
estimate of the planning horizon. We used CPLEX 7.5 in GAMS on a Dell AW Precision 
650MT workstation to solve all the examples.  

All 1-project examples seem trivial for the model. We used sufficiently high revenues 
(80, 50, 80, 40, 40, and 40 units for Pat1 to Pat6 respectively) to make their goal essentially 
task scheduling rather than project selection. For these examples, the makespans vary from 6 
to 18 units. 

 
All 2-project examples solve within 100 CPU s, while all 3-project examples solve 

within 750 CPU s. One 5-project example does not solve to optimality even within 100,000 
CPU s. However, the same 5-project example solves in about 27000 CPU s, when the 
resource availability is increased. All examples involving Pat3 need somewhat longer solution 
time than the average time taken for similar-size problems. As expected, the NPVs for the 
multi-project examples with comparatively more constrained resources are smaller than the 
examples with greater resource availabilities. In addition, the solution times for the latter are 
smaller than the former. 

 
CONCLUSION 
Selection of projects and resource-constrained scheduling of their tasks are problems that 
occur commonly in the manufacturing (including R&D) and service industry. A holistic, 
discrete-time model to obtain a portfolio and detailed project schedules with maximum NPV 
has been presented in this paper, which incorporates several realistic features such as the 
penalties for delayed completions, time-dependent consumption and availabilities of renewable 
and non-renewable resources, option for outsourcing, etc. Thorough numerical testing on a 
series of benchmark problems adopted from the literature has been done to check the 
performance of our model. Our model successfully solved, within reasonable times, a variety of 
test problems involving as many as 78 tasks, three categories of renewable resources, one 
category of non-renewable resource, and piecewise linear delay penalties. 
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