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Summary of the Approach

Recent applications of the QMOM to the simulation of

bivariate/multivariate particle populations [1,2,3] are presented, together with a

preliminary description of several powerful extensions currently under

development  through 'hybridization' of the QMOM with principal components

analysis (PCA), the spectral method called orthogonal collocation (OC), and

empirical orthogonal function (EOF) methods. Applications of the PCA-QMOM

will focus on:  (i) bivariate coagulation and sintering of irregular-shaped particle

aggregates in laminar flames, and (ii) general mixing of multicomponent/

multivariate particle populations under atmospheric conditions. Hybridization

seeks to combine the best features of PCA, OC, and EOF with the QMOM. PCA

provides an efficient and systematic way to assign quadrature points in higher

dimensions. OC and EOF are fixed grid methods with generally higher resolution

than the QMOM, which uses a smaller number of quadrature points optimally

determined by the lower order moments of the particle distribution function. Thus,

the QMOM has the intrinsic advantage of being an adaptive grid method.

Combining these theoretical/numerical approaches should yield higher-resolution

adaptive grids for the efficient simulation of multivariate nanoparticle populations

evolving under complex environmental conditions including the nonlinear process

of Brownian coagulation, with applications to combustion engineering, industrial

crystallization, and atmospheric science.

Orthogonal collocation and moment methods are complementary

approaches to particle population balance that might seem at first glance to be

unlikely candidates for combining into a more powerful hybrid approach.  The key

concepts, illustrated as follows for the univariate case, are readily extendable to

higher dimensions.  Moment methods track integrals over the particle distribution



function (PDF) and not the distribution itself.  For a univariate distribution these

moments take the form:
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Figure 1:  Location of the ROI (dashed vertical lines) based on Eq. 2  with ∆ =2 for a
triangular  distribution function (solid line) with  µ µ σ0 11 0 1= = =,   and , , for three

different values of the skewness: S = -0.565685 (top),  S = -0.115685 (center) and   
S = 0.534315 (bottom).  The arrows are located at the abscissae given by the QMOM
and have lengths given by the corresponding weights.  The five dots highlighted in the
figure correspond to the Chebyshev nodes used for the OCM approximation (dashed line)
almost superimposed to the exact PDF.



for the kth moment.  The approximate equality gives the n-point Gaussian

quadrature approximation.  The OCM, on the other hand, is a distribution function

method.  It attempts to represent and track the full pdf represented by polynomial

interpolation over a discrete finite grid of sampling points at which the polynomial

is constrained to match the PDF.  Thus the OCM generates an approximation to

the full pdf, whereas the QMOM provides very accurate tracking of moments but

no representation of the PDF itself.

In the case of the QMOM, the pdf provides a nonstandard weight

function for which the abscissas and weights are obtained and updated as a

function of time from the moments.  Equations for updating the moments are

constructed in terms of the abscissas and weights thereby resulting in closure for

the system of evolving moments (or evolving abscissas and weights) [4].  The

QMOM has the advantage of being fast and remarkably accurate [5,6], and the

disadvantage of not furnishing the pdf – although for many applications only

integrals over the pdf are required and here the method can be quite accurate

[7].  OC traditionally works on a fixed grid of N points.  The pdf is defined and

updated using these points, and interpolated by the polynomial of degree N-1

constrained to pass through the N points [8].  If N is sufficiently large (e.g. 5-15)

the method provides an accurate representation of the size distribution (see Fig.

1), provided the points are co-located with the pdf.  The OCM is not constrained

to reproduce moments and does not have the adaptive QMOM property of

evolving abscissas, which are always optimally placed to reproduce moments,

with changes in shape and location of the pdf.  This means that if there is large

change in the pdf, e.g. due to a large growth in particle size, the fixed grid must

be initially established broad enough to cover any anticipated change.   Thus a

great many more OC points may be required than would otherwise be necessary

to fit the pdf– if one had and adaptive grid and knew the region of interest (ROI)

as a function of time.  This is the main idea behind the hybrid approach.  Finally

we have the advantage that neither the QMOM or the OCM appear to suffer from

the well-known problems of ‘numerical diffusion’ inherent in sectional methods,

and neither invokes assumed size distributions as do the ‘modal methods’ and

early moment closure methods used prior to development of the QMOM.

We next describe the new approach that combines the best features of

the QMOM and OC methods into a hybrid method that eliminates many of the



weaknesses of the individual methods [9].  In application, the hybrid

QMOM–OCM runs these two complementary methods in parallel using the

lowest-order moments tracked in the QMOM to determine the ROI as a function

of time for the OCM.  Thus the QMOM is totally independent of the OCM,

whereas the latter uses results from the QMOM to update the region of interest.

Figure 1 illustrates the hybrid method for a triangular pdf of evolving skewness,

using 5 collocation points and evolution of 4 moments or, equivalently, 2

quadrature abscissas and weights.  The boundaries a and b of the ROI are

determined using:
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is the skewness.  ∆, is a fixed parameter that plays that role of the radius of the

‘confidence interval’, and need not be symmetrical if S is not equal to zero.

Based on the Chebyshev inequality this parameter should be restricted to values

greater than unity and a convenient approximation would be given by setting ∆ in
the 2-4 range (the higher value for broad distributions such as the lognormal).

The QMOM calculation my be improved by tracking more moments.  We

will present results from additional tracking of the next higher moments µ4  and

µ5 , using in the first case Gauss-Radau quadrature to obtain a new quadrature

abscissa located at the ROI left boundary (a), and Gauss-Lobatto quadrature

incorporating both higher moments to obtain new abscissas at both boundaries

(a and b).  Thus six moments (0 through 5) suffice to give (uniquely) two

quadrature points within the ROI and one at each boundary.  A significant



advantage of including Gauss-Radau and Gauss-Lobatto quadratures is the fact

that one can now compute upper and lower bounds for CERTAIN INTEGRALS

over ANY DISTRIBUTION within the  ROI [10].

Bivariate Extension

Both the QMOM and the OCM can be extended to higher order problems.  The

first successful extension of moment methods to particle distribution functions

characterized by more than a single mass (or radius) coordinate was achieved using the

QMOM [11].  Calculations were made for a well-known bivariate  (volume/area) model

of particles undergoing simultaneous coagulation and sintering, developed by Koch and

Friedlander, and compared with benchmark calculations using a discrete model with

150 size classes along each of the two coordinates (22500 gid points in all).  A bivariate

QMOM simulation can be carried out in seconds on using a ‘personal computer’

whereas the benchmark calculation required about 10 calendar days on a Sun Spark

Enterprise workstation.  Thus adding in the parallel QMOM simulation requires only

minor computational burden that, by identifying the ROI, results in a much smaller N-

values being required by the OCM and much less computational burden overall.

The great computational efficiency of the QMOM makes this method an ideal

candidate for extention to bivariate and multivariate simulations.  One powerful approch

that has been recently developed is an extension of the QMOM using principal

components analysis (PCA) to assign the quadrature points [12, 13].  The bivariate

moments are of the mixed form:
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where x1  and  x2   are particle volume and surface area, respectively, and f x x( , )1 2  is

the bivariate number distribution function.  The simplest bivariate calculation tracks six

mixed moments representing particle number concentration, µ00 , the centroid of the

distribution { , }µ µ10 01 , and the elements of the 2x2 covariance matrix { , , }µ µ µ20 02 11  in

coordinates centered about the means.  In the hybrid PCA-QMOM/OCM (QMOM-OCM

for short) the ROI is optimally defined in the principal coordinate frame.  Here the ROI is

centered at the coordinate centroid and has an ellipsoidal geometry with axes range

several times the PCA variances obtained as the eigenvalues of the covariance matrix.

The corresponding PCA eigenvectors determine the principal axes, or orientation of the



ellipsoid.  The hybrid method yields both moments (from the QMOM) and an accurate

and computationally efficient representation of the pdf (from the OCM).  Illustrative

calculations will be carried out both for a univariate case (as in Fig. 1) and for a bivariate

simulation using the irregular-shaped particle, volume-area coordinates of the

coagulation-sintering model.
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