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 Computational fluid dynamics (CFD) provide a very effective way to probe 
the dynamics of a process and learn about what goes on inside the material 
being processed non-intrusively (Puri and Anantheswaran, 1993). Numerical 
simulations have a wide range of applications in equipment design, optimization, 
scale up and scale down in many food processing operations. The geometrical 
complexities of process equipments and the non- linear viscoelastic properties of 
food materials makes it a necessity to invest in numerical simulation if 
appropriate progress is to be made in improving food operations (Connelly, 2004). 
 
 CFD offers a powerful design and investigative tool to process engineers. 
It assists in a better understanding of the complex physical mechanisms that 
govern the operations of food processes. CFD has only recently been applied to 
food processing applications. The advent of powerful computers and work 
stations has provided the opportunity to simulate various real-world processes. 
Food materials are subjected to mechanical and thermal effects during 
processing. 
 
 When simulating the processing of food products, it is necessary to take 
the rheological nature of a food into account as this will dictate its flow behavior. 
There are many CFD approaches to discretizing the equations of conservation of 
momentum, mass, and energy, together with the constitutive equation that 
defines the rheology of the fluid being modeled and the boundary and initial 
conditions that govern the flow behavior in particular geometries such as 
extruders and mixers (Connelly and Kokini, 2001 and 2004; Dhanasekaran and 
Kokini, 2003). The most important of these are finite difference (FDM), finite 
volume (FVM), and finite element (FEM) methods. Others CFD techniques can 
be listed as spectral schemes, boundary element methods, and cellular automata, 
but their use is limited to special classes of problems. 
 
 The use of the finite element method (FEM) as a numerical procedure for 
solving differential equations in physics and engineering has increased 
considerably. The finite-element method has various advantages contributing to 
this popularity: Spatial variations of material properties can be handled with 
relative ease; irregular regions can be modeled with greater accuracy; element 
size can be easily varied; it is better suited to non-linear problems; and mixed- 
boundary value problems are easier to handle (de Baerdemaeker et al., 1977). 
The major disadvantage of the method is that it is numerically intensive and can 
therefore take high CPU time and memory storage space. 
 



 In FEM there are three primary steps: The domain under consideration is 
divided into small elements of various shapes called finite elements. All elements 
are assumed to be connected at nodal points located along the boundaries and 
the collection of parts is called as the mesh. Over each part, the solution is 
approximated as a linear combination of nodal values and approximation 
functions, and algebraic relations are derived between physical quantities and 
the nodal values. Finally the parts are assembled to obtain the solution to the 
whole (Reddy, 1993). 
 
 Numerical simulation of processes is conducted by simultaneously solving 
continuum equations that describe the conservation laws of momentum and 
energy, with a rheological equation of state (constitutive models) of the food 
material to be processed, along with boundary/initial conditions. 
 
Viscoelastic constitutive models in CFD 
 
 Constitutive models play a significant role in the accuracy of the 
predictions by numerical simulations. A proper choice of a constitutive model, 
either generalized Newtonian or viscoelastic, that describes the flow behavior of 
the material under investigation, is important.  
 
 Differential viscoelastic models have generally been more popular than 
integral models in numerical developments (Crochet, 1989). Nonlinear differential 
models are of particular interest in numerical simulations for process design, 
optimization and scale-up. This is because integral viscoelastic models are not 
well suited for use in numerical simulation of complex flows due to high 
computational costs involved in tracking the strain history, particularly in three-
dimensional flows (Dhanasekaran, 2001). 
 
 Dhanasekaran et al. (1999, 2001, 2003) focused on the proper choice of 
constitutive models for wheat flow doughs for the design and scaling of extrusion 
by numerical simulation. The flow in an extruder is shear dominant, and therefore 
two groups of models which give a good prediction of shear properties of dough 
were tested: Generalized Newtonian models (Newtonian fluid, power-law fluid, 
Hershel-Bulkley fluid, and Morgan fluid) and differential viscoelastic models 
(Phan-Thien Thanner, White-Metzner and Giesekus-Leonov model). 
 
Importance of viscoelasticity in mixing flows 
 
 The effects of viscoelasticity on mixing flows have been observed most 
dramatically in the secondary flows in mixers. This has been attributed to the 
complex interaction between the centrifugal forces caused by the primary 
tangential flow and inertia and the normal forces generated in elastic fluids 
(Connelly, 2004). 
 



 Viscoelasticity also affects power consumption, a key design parameter 
for mixers. In the laminar regime under creeping flow conditions, it has a 
negligible impact. At higher Reynolds numbers, a reduction in power 
consumption has been observed by some authors and is thought to be due to 
suppression of the inertia driven secondary flows. It has been suggested that as 
intermediate flow patterns develop, the opposing circulations would dissipate 
more energy and thus lead to increased power consumption. Other researchers 
found that elastically driven secondary flows are slower and require more energy 
to maintain than inertially driven flows, therefore increasing the power. They also 
suggested that increases in the stresses generated in elongational flow fields due 
to the much higher elongational velocity in viscoelastic fluids also play an 
important but undetermined role in increasing the torque requirements (Connelly, 
2004). 
 
FEM simulation techniques for viscoelastic fluid flows 
 
 The numerical simulation of various unit operations is conducted by 
simultaneously solving the continuum equations that describe the conservation 
laws of momentum and energy, with a rheological equation of state (constitutive 
models) of the food material to be processed, along with boundary and initial 
conditions. 
 
 For an incompressible fluid, the stress tensor (σ) is given as the sum of an 
isotropic pressure (p) component and an extra stress tensor (Τ). 
 
σ = − pΙ + Τ 
 
 The conservation of linear momentum is then given by: 
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where ρ is the fluid density and f is the external body force per unit mass. For 
incompressible fluids, conservation of mass yields the continuity equation: 
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and the conservation of energy equation is given as: 
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where C(T) is the heat capacity as a function of temperature, r is the given 
volumetric heat source, q is the heat flux, and T:∇v is the viscous heating term. 
These equations together with constitutive models form a complete set of 
governing equations. The solutions of these equations give velocity and 



temperature profiles for a particular problem. In most cases, the solution of these 
equations requires numerical methods, such as finite element method. An 
abundance of software tools are available in the market using finite elements 
methods to solve flow problems. 
 
 A variety of numerical methods based on finite element methodology are 
available. One of the formulations is the so called weak formulation. In this 
method, the momentum equation and the continuity equation are weighted with 
fields V and P and integrated over the domain Ω. The finite element formulations 
are given by 
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where T is the extra stress tensor, V and P denote the velocity and pressure 
fields, respectively.  The domain Ω, is discretized using finite elements covering a 
domain, Ωh on which the velocity field and pressure fields are approximated 
using vh and ph. The superscript h refers to the discretized domain. The 
approximations are obtained using: 
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where Vi and pi are nodal variables and ψi and πi are shape functions. The 
unknowns Vi and pi are calculated by solving the weak forms of equations of 
motion and the continuity equation, along with the formulations for the 
constitutive models, using two basic approaches. 
 
 The first approach also known as the coupled method is the mixed or 
stress-velocity-pressure formulation. The primary unknown, the stress tensor, is 
formulated using an approximation Th with: 
 

i

ih !"= TT  
 
where Ti are nodal stresses while φi are shape functions. This procedure is 
normally used with differential models. The main disadvantage of this method is 
the large number of unknowns and hence high computational costs for typical 
flow problems. 
 
 The second approach, called as the decoupled scheme, uses an iterative 
method. The computation of the viscoelastic extra-stress is performed separately 
from that of flow kinematics. The stress field is calculated from flow kinetics. In 



this approach, the number of variables is much lower than in the mixed method, 
but the number of iterations is much larger. 
 
 A straightforward implementation of these two approaches gives an 
instability and divergence of the numerical algorithms for viscoelastic problems. 
FEM solvers use a variety of numerical methods to circumvent convergence 
problems for viscoelastic flows. 
 
 Viscoelastic fluids exhibits normal stress differences in simple shear flow. 
Early attempts to simulate viscoelastic flows numerically were restricted to very 
moderate Weissenberg numbers (i.e. a non-dimensional measure of fluid 
elasticity) as the solutions invariably became unstable at unrealistically low Wi 
values. This problem is called as the “high Weissenberg number problem” and it 
is mostly due to the hyperbolic part of the differential constitutive equations. 
Numerical methods were unable to handle flows at Wi values sufficiently high to 
make comparisons with the experimental results. Progress has been made by 
use of central numerical methods, such as central finite differences or Galerkin 
finite elements, by which small Weissenberg numbers are attainable. More 
insight in the type of the system of differential equations led to development of 
upwind schemes, such as the Streamline Upwind (SU) by Marchal and Crochet 
(1987) and streamline integration method by Luo and Tanner (1986a, 1986b). 
Furthermore, the Streamline Upwind/Petrov-Galerkin (SUPG) method was 
developed by rewriting the set of partial differential equations in the explicit 
elliptic momentum equation form. SUPG method is considered more accurate 
compared to SU method but it is only applicable to smooth geometries. 
 
 In order to ease the problems caused by the high stress gradients, 
viscoelastic extra-stress field interpolation techniques, which include biquadratic 
and bilinear subelements, are used. Marchal and Crochet (1987) introduced the 
use of 4x4 subelements for the stresses. These bilinear subelements smoothed 
the mixed method solution of the Newtonian stick-slip problem, as well as aided 
in the convergence of the viscoelastic problem. Perera and Walters (1977) 
introduced a method known as Elastic Viscous Stress Splitting (EVSS) by 
splitting the stress tensor into an elastic part and a viscous part, which stabilizes 
the behavior of the constitutive equations. EVSS is the only technique available 
for use in 3D or with multiple relaxation times. 
 
CFD simulations of flow in an extruder 
 
 Dhanasekharan and Kokini (1999) characterized the 3D flow of whole flour 
wheat dough using three nonlinear differential viscoelastic models, Phan-Thien 
Tanner, the White-Metzner and the Giesekus models. The Phan-Thien-Tanner 
(PTT) model gave good predictions for transient shear and extensional properties 
of wheat flour dough. Based on the rheological studies using differential 
viscoelastic models, PTT model was concluded to be the most suitable for 
numerical simulations (Dhanasekharan et al., 1999). 



 
 Dhanasekharan and Kokini (2000) modeled the 3D flow of a single mode 
PTT fluid in the metering zone of completely filled single-screw extruder. The 
modeling was done by means of a stationary screw and rotating barrel. The 
pressure buildup for the PTT model was found to be smaller than the Newtonian 
case (figure 1), which is explained by the shear-thinning nature incorporated into 
the differential viscoelastic model. The velocity profile generated using the 
viscoelastic model, however, was found to be very close to the Newtonian case 
(figure 2). 
 
Figure 1. Comparison of pressure profile of PTT model prediction with the 
Newtonian model (Dhanasekharan, 2000). 
 

 
 A fundamental analysis was done using two important dimensionless 
numbers, Deborah number (De) and Weissenberg number (Wi). For the chosen 
flow conditions and the extruder geometry, Deborah and Weissenberg numbers 
were reported to be 0.001 and 5.22, respectively. De=0.001 explained the 
velocity profile predictions close to Newtonian case, as De → 0 indicates a 
viscous liquid behavior. When the relaxation processes are of the same order of 
magnitude of the residence time of flow (i.e. De ~ 1), the impact of viscoelasticity 
on the flow becomes significant. Wi=5.22 indicated “high Weissenberg number 
problem”. In spite of the difficulties in convergence due to high Wi, these results 
provided a starting point for further simulations of viscoelastic flow using more 
realistic parameters. 
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Figure 2. Comparison of down channel velocity profile of PTT model prediction 
with the Newtonian model (Dhanasekharan, 2000). 

 
 
CFD Simulations of Flow in Model Mixers 
 
 Classical geometries such as contraction flows, flow past a cylinder in a 
channel, flow past a sphere in a tube and flow between eccentrically rotating 
cylinders have been traditionally used as benchmark problems for testing new 
techniques and understanding fundamental effects involved in mixing. Studies 
involving simple model mixer geometries have been done to understand mixing 
phenomena in mixers with geometries closer to industrial mixers. Only recently 
mixing in complex geometries such as the twin-screw continuous mixers and 
batch Farinograph mixers has been addressed utilizing new advances in 
numerical simulation techniques and computational capabilities (Connelly and 
Kokini, 2004). 
 
 Good progress has been made in understanding the effects of rheology 
and geometry on the flow and mixing in batch and continuous mixers, as well as 
in identifying conditions necessary for efficient mixing (Connelly and Kokini, 2003 
and 2004). Finite element method (FEM) was used for numerical simulations of 
the flow of dough-like fluids in model batch and continuous dough mixing 
geometries. Several FEM techniques, such as elastic viscous stress splitting 
(EVSS), Petrov-Galerkin (PG), 4x4 subelements, streamline upwind (SU) and 
Streamline Upwind/Petrov-Galerkin (SUPG) were used for differential 
viscoelastic models. 
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 Connelly & Kokini (2004) explored the viscoelastic effects on mixing flows 
obtained with kneading paddles in a single screw, continuous mixer. A simple 2D 
representation of a single paddle in a fully filled, rotating cylindrical barrel with a 
rotating reference frame was used as a starting point to evaluate the FEM 
techniques. The single screw mixer was modeled by taking the kneading paddle 
as the point of reference, fixing the mesh in time. Here, either the paddle turns 
clockwise with a stationary wall in a reference frame or the wall moves 
counterclockwise in the rotating reference frame originating from the center of the 
paddle. 
 
 The single-mode, non-linear Phan-Thien Tanner differential viscoelastic 
model was used to simulate the mixing behavior of dough-like materials. Different 
numerical simulation techniques including EVSS SUPG, 4x4 SUPG, EVSS SU 
and 4x4 SU were compared for their ability to simulate viscoelastic flows and 
mixing. Mesh refinement and comparison between methods were also done 
based on the relaxation times at 1 rpm and the Deborah number (De) to find the 
appropriate mesh size and the best technique to reach the desired relaxation 
time of 1000 seconds. The limits of the De that were reachable in this geometry 
with the PTT model are listed in Table 1. The coarser meshes allowed 
convergence at higher De since the high gradients at the discontinuity are 
smoothed in the boundary layers. 
 
Table 1. Limits of Deborah number reached by several methods used in 
viscoelastic simulations during mesh refinement at 1 rpm (Connelly and Kokini, 
2003). 

Mesh Size EVSS SUPG 
λ(1 rpm)  De 

4x4 SUPG 
λ(1 rpm)    De 

EVSS SU 
λ(1 rpm)    De 

4x4 SU 
λ(1 rpm) De 

360 elements 0.327 0.034 0.23 0.024 651.04 68.2 1000 104.7 
600 elements 0.178 0.019 1.04 0.109 14.12 1.47 23.4 2.45 
1480 elements 0.089 0.009 0.089 0.009 0.73 0.076 131.78 13.8 
2080 elements - - 0.066 0.007 0.79 0.082 543.58 56.9 
3360 elements - - - - 0.58 0.061 110.32 11.6 

 
 The SUPG technique and less computationally intensive EVSS technique 
were found to be not adequate for this geometry. Only the 4x4 SU techniques 
was able to reach De values representative of the level of viscoelasticity closer to 
dough viscoelasticity. Even this technique was unable to reach the desired 
relaxation time of 1000 seconds at low rpm values. High rpm values are more 
representative of the actual conditions found in this type of mixer. At high rpm 
levels the instabilities in the calculations were found to disappear. 
 
 The effect of shear thinning and viscoelastic flow behavior on mixing was 
systematically explored using the Newtonian, Bird-Carreau viscous, Oldroyd B 
and Phan-Thien Tanner models using single screw simulations with the rotating 
reference frame approach. For the application of these techniques the 
rheological data and non-linear viscoelastic models for wheat flour doughs 



previously studied by Dhanasekharan et al. (1999), Wang and Kokini (1995a and 
1995b) were utilized. Comparison of the predictions by these viscoelastic models 
with experimental data showed that viscoelastic flow predictions differ 
significantly in shear and normal stress predictions resulting in a loss of 
symmetry in velocity (Figure 3) and pressure profiles (Figure 4) in the flow region. 
Introduction of shear thinning behavior resulted in a decrease in the magnitude of 
the pressure and stress and an increase the size of low velocity or plug flow 
regions. 
 
Figure 3. Velocity magnitude distribution at 1 rpm of a) Newtonian (λ=0s), b) 
Oldroyd-B (λ=0.5s), c) Bird-Carreau Viscous (λ=60s) and d) PTT (λ=100s) where 
the units of velocity are cm/s (Connelly, 2004). 
 

 
 
Figure 4. Pressure distributions at 1 rpm of a) Newtonian (λ=0s), b) Oldroyd-B 
(λ=0.5s), c) Bird-Carreau Viscous (λ=60s) and d) PTT (λ=100s) where the units 
of pressure are dyne/cm2 (Connelly, 2004). 
 

 
 The studies mentioned above demonstrate the effectiveness of numerical 
simulation in studying the flow of materials with different rheological properties in 
different mixer and extruder geometries non-intrusively. Numerical simulations 
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serve as valuable tools for process and design engineers to examine the flow 
behavior of materials of different rheological characteristics. CFD is also a very 
effective way to test new ideas to see if they will actually improve a specific food 
process application without having to build the process equipment in question. 
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