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Abstract 
Enterprise-wide optimization (EWO) is a new emerging area that lies at the interface of chemical 
engineering and operations research, and has become a major goal in the process industries due 
to the increasing pressures for remaining competitive in the global marketplace.  EWO involves 
optimizing the operations of supply, manufacturing and distribution activities of a company to 
reduce costs and inventories. A major focus in EWO is the optimal operation of manufacturing 
facilities, which often requires the use of nonlinear process models. Major operational items 
include planning, scheduling, real-time optimization and inventory control.  One of the key 
features of EWO is integration of the information and the decision-making among the various 
functions that comprise the supply chain of the company. This can be achieved with modern IT 
tools, which together with the internet, have promoted e-commerce. However, as will be 
discussed in this paper, to fully realize the potential of transactional IT tools, the development of 
sophisticated deterministic and stochastic linear/nonlinear optimization models and algorithms 
(analytical IT tools) is needed to explore and analyze alternatives of the supply chain to yield 
overall optimum economic performance, as well as high levels of customer satisfaction. An 
additional challenge is the integrated and coordinated decision-making across the various 
functions in a company (purchasing, manufacturing, distribution, sales), across various 
geographically distributed organizations (vendors, facilities and markets), and across various 
levels of decision-making (strategic, tactical and operational).    
 
Introduction 
 
The process industry is a key industrial sector in the U.S. In particular, the chemical industry is 
the major producer in the world (24% of world production) with shipments reaching $459 billion 
(2% of the total U.S. GDP) and $91 billion in exports in 2003 (see 
http://www.eere.energy.gov/industry/about/pdfs/chemicals_fy2004.pdf).  However, due to the 
increasing pressure for reducing costs and inventories in order to remain competitive in the 
global marketplace, Enterprise-wide Optimization (EWO) has become the "holy grail" in process 
industries. For instance at the conference Foundations of Computer-Aided Process Operations 
that took place in Coral Springs in January 2003, under the theme “A View to the Future 
Integration of R&D, Manufacturing and  the Global Supply Chain,” it became clear that there is 
great interest among a variety of process industries such as petroleum, chemical, pharmaceutical, 
consumer products, to achieve the goal of EWO (see http://www.cheme.cmu.edu/focapo, 
Lasschuit and Thijssen, 2004; Neiro and Pinto, 2004; Shah, 2004). As shown in Fig. 1, the 
supply chain in the petroleum industry comprises many intermediate steps starting from the 
exploration phase at the wellhead, going through trading and transportation, before reaching the 
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refinery, and finally the distribution and delivery of its products, some at the retail level (e.g. 
gasoline). In this case it is clear that the effective coordination of the various stages is essential to 
accomplish the goal of EWO. Fig. 2 shows the R&D phase for the testing of new drugs in the 
pharmaceutical industry, which can be regarded as the initial component in the supply chain of 
that industry and that is the major bottleneck. The goal of achieving Enterprise-wide 
Optimization in the two examples is clearly still elusive and motivates the research challenges 
outlined in the paper. 
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Fig. 1. Supply chain in the petroleum industry (courtesy ExxonMobil). 
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Fig. 2. R&D component of the supply chain in the pharmaceutical industry 

 
Enterprise-wide Optimization is an area that lies at the interface of chemical engineering 
(process systems engineering) and operations research. It involves optimizing the operations of 
supply, manufacturing (batch or continuous) and distribution in a company. The major 
operational activities include planning, scheduling, real-time optimization and inventory control. 
Supply Chain Management might be considered an equivalent term for describing EWO (see 
Shapiro, 2001). While there is a significant overlap between the two terms, an important 
distinction is that Supply Chain Management is aimed at a broader set of real-world applications 
with an emphasis on logistics and distribution, which usually involve linear models, traditionally 
the domain of Operations Research. In contrast in Enterprise-wide Optimization the emphasis is 
on the manufacturing facilities with a major focus being their planning, scheduling and control 
which often requires the use of nonlinear process models, and hence knowledge of Chemical 
Engineering. We should also note that many process companies are adopting the term Enterprise-
wide Optimization to reflect both the importance of manufacturing within their supply chain, as 
well as the drive to reduce costs through optimization. 
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One of the key features in EWO is integration of the information and decision making among the 
various functions that comprise the supply chain of the company. Integration of information is 
being achieved with modern IT tools such as SAP and Oracle that allow the sharing and 
instantaneous flow of information along the various organizations in a company. The 
development of the internet and fast speed communication has also helped to promote through e-
commerce the implementation and deployment of these tools. While these systems still require 
further developments to fully realize the vision of creating an agile platform for EWO (i.e. 
transactional information), it is clear that we are not too far from it. 
  
While software vendors provide IT tools that in principle allow many groups in an enterprise to 
access the same information, these tools do not generally provide comprehensive decision 
making capabilities that account for complex trade-offs and interactions across the various 
functions, subsystems and levels of decision making. This means that companies are faced with 
the problem of deciding as to whether to develop their own in-house tools for integration, or else 
make use of commercial software from vendors. 
 
Some commercial tools are becoming increasingly capable of addressing some parts of the 
Enterprise-wide Optimization in the process industry (e.g. Aspentech, Mahalec, 2001). As a 
specific example of a strategic planning study, BASF performed a corporate network 
optimization of packaged finished goods in North America. There were 17 operating divisions 
with multiple, heterogeneous systems: 25,000 SKU’s (stock keeping units), 134 Shipping Points, 
15,000 Ship-to locations, 956 million pounds shipped direct to customers, 696 million pounds 
shipped to customers through distribution centers. By using optimization tools from Aspen 
Technology, BASF reduced transportation and facility costs by 10%, next-day volume delivery 
increased from 77% to 96%, the number of distribution centers was reduced from 86 to 15, 
generating $10 million/year savings in operating costs.  
 
From the above example it can be seen that there is great economic potential in EWO and that 
some progress has been made towards the goal of developing some of the basic building blocks. 
However, major barriers are the lack of computational optimization models and tools that will 
allow the full and comprehensive application of EWO throughout the process industry. This will 
require a new generation of tools that allow the full integration and large-scale solution of the 
optimization models, as well as the incorporation of accurate models for the manufacturing 
facilities. Given the strong tradition that chemical engineers have in process systems engineering 
and in the optimization area (see Biegler and Grossmann (2004) for a recent review), they are 
ideally positioned to make significant contributions in EWO.  
 
Challenges in Enterprise-wide Optimization 
 
In order to realize the full potential of transactional IT tools, the development of sophisticated 
optimization and decision-support tools (analytical IT tools) is needed to help explore and 
analyze alternatives, and predict actions for the operation of the supply chain so as to yield 
overall optimum economic performance, as well as high levels of customer satisfaction. A major 
challenge that is involved in EWO of process industries is the integrated and coordinated 
decision-making across the various functions in a company (purchasing, manufacturing, 
distribution, sales), across various geographically distributed organizations (vendors, facilities 
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and markets), and across various levels of decision-making (strategic, tactical and operational) as 
seen in Figure 3 (Shapiro, 2001).   The first two items conceptually deal with issues related to 
spatial integration in that they involve coordinating the activities of the various subsystems of an 
enterprise.  The third item deals with issues related to temporal integration in that they involve 
coordinating decisions across different time scales. Addressing these spatial and temporal 
integration problems is important because they provide a basis to optimize the decision-making 
in an enterprise through the IT infrastructure.  
 
In order to achieve EWO throughout the process industry, this goal will require a new generation 
of computational tools for which the following major challenges must be addressed: 
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Fig. 3. Transactional and Analytical IT (Tayur et al., 1999). 
 

a) The modeling challenge: What type of production planning and scheduling models should be 
developed for the various components of the supply chain, including nonlinear 
manufacturing processes, that through integration can ultimately achieve enterprise-wide 
optimization? Major issues here are the development of novel mathematical programming 
and logic-based models that can be effectively integrated to capture the complexity of the 
various operations. 

b)  The multi-scale optimization challenge: How to coordinate the optimization of these models 
over a given time horizon (from weeks to years), and how to coordinate the long-term 
strategic decisions (years) related to sourcing and investment, with the medium-term 
decisions (months) related to tactical decisions of production planning and material flow, and 
with the short-term operational decisions (weeks, days) related to scheduling and control? 
Major issues here involve novel decomposition procedures that can effectively work across 
large spatial and temporal scales. 
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c) The uncertainty challenge: How to account for stochastic variations in order to effectively 
handle the effect of uncertainties (e.g. demands, equipment breakdown)? Major issues here 
are the development of novel, meaningful and effective stochastic programming tools. 

d) The algorithmic and computational challenge: Given the three points above, how to 
effectively solve the various models in terms of efficient algorithms, and in terms of modern 
computer architectures? Major issues here include novel computational algorithms and their 
implementation through distributed or grid computing. 

Although progress has been made in some of the areas cited above, significant research effort is 
still required to overcome the four challenges above. The following sections briefly discuss the 
technical issues involved in each of the challenges. The long term goal is to produce new 
analytical IT tools that will help to realize the full potential of EWO in conjunction with the 
transactional IT tools. 
  
The modeling challenge 
  
While the area of planning and scheduling has seen the development of many models in 
Operations Research (OR) (e.g. Pinedo, 2001), over the last decade a significant number of 
planning and scheduling models have been proposed specifically for process applications (for a 
recent review see Pinto and Grossmann, 1998;  Shah, 1998; Pekny and Reklaitis, 1998). In 
contrast to general OR scheduling models, the process-oriented models tend to require the use of 
material flows, and very often network topologies that are quite different from the more 
traditional serial and multistage systems.  Furthermore, they address both batch and continuous 
processes, and may require the use of detailed nonlinear process models. 
 
The most general batch scheduling model that has been proposed for short-term scheduling for 
processing applications is the State-Task Network by Kondili et al (1993). This model has the 
feature that it does not pre-assign equipment to tasks, the batches are of variable size and can be 
combined and split. The original model relied on a discrete time representation which led to a 
mixed-integer linear programming (MILP) formulation. Pantelides (1994) proposed the 
Resource-Task Network as an alternative representation that leads to a more compact MILP 
model. Recent efforts on this problem have extended the model to continuous time which greatly 
complicates the underlying MILP model (e.g. see Schilling and Pantelides, 1996; Zhang and 
Sargent, 1996; Ierapetritou and Floudas, 1998; Mockus and Reklaitis, 1999; Maravelias and 
Grossmann, 2003). On the other hand there are a good number of specific process scheduling 
models that have been developed to better exploit the special structure of some problems (e.g. 
continuous multistage with parallel units; see Jia et al, 2003), and to incorporate process 
performance models and explicit handling of changeovers (e.g. see Jain and Grossmann, 1998). 
Another common occurrence is in long term cyclic scheduling models in which at the very least 
the objective function must be expressed in nonlinear form (e.g. see Pinto and Grossmann, 1994). 
It should be noted however, that despite the progress that has been made, the availability of a 
general purpose scheduling and planning model for the process industries, particularly for 
continuous processes, is still elusive. This is not only because of the great variety of problems 
that arise in practice, but also because of a number of major computational issues, namely 
difficulties in solving large-scale discrete and continuous optimization problems, handling of 
nonlinear process models, and treatment of uncertainties.  
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The general form of the deterministic problems in EWO problems corresponds to the following 
multiperiod mixed-integer programming problem: 
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where ,, tt gf are scalar and vector functions (linear/nonlinear), respectively, and T is a set of 
fixed or variable time periods. The variables x represent decisions independent of the time 
periods, while the variable wt represent decisions at each time period t, where 

.≤,≤ wwxx nmnm  tθ are exogenous or endogenous parameters that have fixed values for 
deterministic problems. When considering uncertainties, these parameters are treated as random 
variables and problem (P) is extended as a stochastic programming problem. Since EWO will 
require the formulation and solution of problems of type (P), both linear and nonlinear that are 
one or several orders of magnitude larger than current planning and scheduling models, research 
is needed in order to produce effective computational models. 
 
The multi-scale optimization challenge 
 
Integration and coordination are key components in EWO (Shapiro, 2004; Song and Yao, 2001). 
The areas outlined in the following sections correspond to major unresolved problem areas. 
 
Integration of Production Planning, Scheduling and Real–time Optimization. The 
fundamental issue in this area is the integration of models across very different time scales (Shah, 
1998). Typically, the planning model is a linear and simplified representation that is used to 
predict production targets and material flow over several months (up to one year). Also at this 
level effects of changeovers and daily inventories are neglected which tends to produce 
optimistic estimates that cannot be realized at the scheduling level. Scheduling models on the 
other hand tend to be more detailed in nature, but assume that key decisions have been taken (e.g. 
production targets, due dates).  Two major approaches that have been investigated for integrating 
planning and scheduling are the following: 

i)  Simultaneous planning and scheduling over a common time grid. The idea here is to 
effectively "elevate" the scheduling model to the planning level, which leads to a very large-
scale multiperiod optimization problem, since it is defined over long time horizons with a 
fine time discretization (e.g. intervals of one day).  A good example is the use of the State-
Task-Network for multisite planning (e.g. Wilkinson et al., 1996).  To overcome the problem 
of having to solve a very large scale problem, strategies based on aggregation and 
decomposition can be considered (see Basset et al., 1996; Birewar and Grossmann, 1990; 
Wilkinson, 1996). The former typically involve aggregating later time periods within the 
specified time horizon in order to reduce the dimensionality of the problem.  

ii) Decomposition techniques for integrating planning and scheduling are usually based on a 
two-level decomposition procedure where the upper level problem (planning problem) is an 
aggregation of the lower level problem (scheduling). The challenge lies in developing an 
aggregated planning model that yields tight bounds to reduce the number of upper and lower 
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level problems (Papageorgiou and Pantelides, 1996a, 1996b; Bok et. al, 2000). Another 
solution approach relies on using a rolling horizon approach where the planning problem is 
solved by treating the first few periods in detail, while the later periods are aggregated 
recursively  (Dimitriadis et al. 1997).  

Finally, real-time optimization (RTO) models are nonlinear and are defined over short time 
intervals; integration of RTO with planning and scheduling is a topic that has received virtually 
no attention in the literature. 

 
Optimization of Supply Chains. When considering a specific decision level (strategic, tactical 
or operational), it is often desired to consider the entire supply chain of a given enterprise (e.g. 
Equi et al. 1997; Erengüç, 1999; Neiro and Pinto, 2003). Here again problem size can become a 
major issue as we have to handle models across many length scales. Two major approaches are 
to either consider a simultaneous large-scale optimization model, or else to use decomposition 
either in spatial or in temporal forms (Kulkarni and Mohanty, 1996), usually using Lagrangean 
decomposition (Graves, 1982; Gupta and Maranas, 1999). In the case of spatial decomposition 
the idea is to severe the links between subsystems (e.g. manufacturing, distribution and retail) by 
dualizing the corresponding interconnection constraints, which then requires the multiperiod 
optimization of each system. In the case of temporal decomposition the idea is to dualize the 
inventory constraints in order to decouple the problem by time periods. The advantage of this 
decomposition scheme is that consistency is maintained over every time period (Jackson and 
Grossmann, 2003). See also Daskin et al. (2002) for combining location and inventory models. 

 
Simultaneous optimization approaches for the integration of entire supply chains naturally lead 
to the definition of centralized systems. In practice, however, the operation tends to takes place 
as if the supply chain were a decentralized system. What is needed are coordination procedures 
that can maintain a certain degree of independence of  subsystems (Nishi et al., 2002), while at 
the same time aiming at objectives that are aimed at the integrated optimization of the overall 
system (see Perea et al, 2001). 
 
The Uncertainty Challenge 
 
Uncertainty is a critical issue in supply chain operations. Furthermore, it is complicated by the 
fact that the nature of the uncertainties can be quite different in the various levels of the decision 
making (e.g. strategic planning vs. short term scheduling). Most of the research thus far has 
focused on operational uncertainty, such as quality, inventory management and handling 
uncertain processing time (e.g. Zipkin, 2000, Montgomery, 2000, Balasubramanian and 
Grossmann, 2002). Much less work has focused on uncertainty at the tactical level, for instance, 
production planning with uncertain demand (Gupta and Maranas, 2003; Balasubramanian and 
Grossmann, 2004). The reason for this is that the resulting optimization problems are extremely 
difficult to solve since they give rise to stochastic programming problems (Birge and Louveaux, 
1997). In a stochastic program, mathematical programs are solved over a number of stages. 
Between each stage, some uncertainty is resolved, and the decision maker must choose an action 
that optimizes the current objective plus the expectation of the future objectives. The most 
common stochastic programs are two-stage models that are solved using a variant of Benders’ 
decomposition. When the second-stage (or recourse) problem is a linear program these problems 
are straightforward to solve, but the more general case is where the recourse is a MILP or a 
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MINLP. Such problems are extremely difficult to solve since the expected recourse function is 
discontinuous and nonconvex (Sahinidis, 2004).  
 
As an example, consider the problem of production planning across a supply chain with 
uncertain demands. The first-stage problem is to create a production plan. After the demand is 
realized, a plant process optimization problem must be solved for each plant. The challenge is to 
find a production plan that minimizes the expected production cost. The hierarchical nature of 
supply chains lends itself naturally to stochastic programming models, and in particular the 
decomposition principles that are used to solve them. 
 
The Algorithmic and Computational Challenges 
 
Realizing the vision of EWO will require the development of advanced algorithms and 
computational architectures in order to effectively and reliably solve the large-scale optimization 
models. In this section we briefly outline some of the more technical aspects that are involved in 
this endeavor. We should note that collaboration between researchers in process systems 
engineering and operations research should be most fruitful in this area. 
  
Mixed-integer linear programming. When detailed process performance models are not used, 
planning and scheduling problems for EWO commonly give rise to mixed-integer linear 
programming problems (MILPs). These optimization problems can be computationally 
expensive to solve since in the worst case they exhibit exponential computational complexity 
with problem size (NP-hard). However, in the last 10 years great progress has been made in 
algorithms and hardware, which has resulted in an impressive improvement of our ability to 
solve mixed-integer programming problems (MILPs) (Bixby, 2002; Johnson et al, 2000) through 
codes such as CPLEX and XPRESS. Capitalizing on theory developed during the last 20 years, it 
is now possible, using off-the-shelf LP-based branch-and-bound commercial software, to solve 
in a few seconds MILP instances that were unsolvable just 5 years ago. This improvement has 
been particularly dramatic for certain classes of problems, such as the traveling salesman 
problem, and certain industries, such as the commercial airlines. In contrast, for the type of 
problems that arise in process industries, the available LP-based branch-and-bound software is 
not always capable of solving industrial-size MILP models. One reason is that, nonconvex 
functions, such as piecewise linear functions, and combinatorial constraints, such as multiple-
choice, semi-continuous, fixed-charge, and job sequencing disjunctions (i.e. either job i precedes 
job j or vice-versa), abound in optimization problems related to process industries. For such 
functions and constraints, the “textbook” approach implemented in the current software is often 
not practical. 
 
In the current methods, nonlinearities are often modeled by introducing a large number of 
auxiliary binary variables and additional constraints, which typically doubles the number of 
variables and increases the number of constraints by the same order of magnitude. Also, with this 
approach, the combinatorial structure is obscured and it is not possible to take advantage of the 
structure. In the case of EWO, where many of these constraints appear at the same time and the 
sizes of the instances are considerably larger, these issues are even more serious. Recently, an 
alternative method, branch-and-cut without auxiliary binary variables, inspired by the seminal 
work of Beale and Tomlin (1970) on special ordered sets, has proved to be promising in dealing 
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with such constraints (de Farias, 2004). It consists of enforcing the combinatorial constraints 
algorithmically, directly in the branch-and-bound scheme, through specialized branching and the 
use of cutting planes that are valid for the set of feasible solutions in the space of the original 
decision variables. The encouraging computational results yielded by the method on some of the 
aforementioned constraints provide a serious indication that it may be of great impact on EWO 
problems for the process industries. The use of cutting planes in an LP-based branch-and-bound 
approach has also proven to be of significant importance in obtaining strong bounds to reduce 
the required amount of enumeration (see for example Marchand, Martin, Weismantel, and 
Wolsey, 2002). 
 
Constraint Programming. The relatively new field of constraint programming has recently 
become the state of the art for some important kinds of scheduling problems, particularly 
resource-constrained scheduling problems, which occur frequently in supply-chain contexts.  
Constraint programming (CP) can bring advantages on both the modeling and solution sides.  
The models tend to be more concise and easier to debug, since logical and combinatorial 
conditions are much more naturally expressed in a CP than in an MILP framework (e.g., Milano 
2003).  The solvers take advantage of logical inference (constraint propagation) methods that are 
well suited to the combinatorial constraints that characterize scheduling problems.  In particular, 
the sequencing aspect of many scheduling problems—the task of determining in what order to 
schedule activities—can present difficulties to MILP because it is difficult to model and gives 
rise to weak continuous relaxations.  By contrast, a CP model readily formulates sequencing 
problems and offers specialized propagation algorithms that exploit their structure. Furthermore, 
heuristics can readily be accommodated in CP. 
 
The greatest promise, however, lies in the integration of CP and MILP methods, which is 
currently a very active area of research (Hooker, 2000). Several recent systems take some steps 
toward integration, such as ECLiPSe (Wallace et al. 1997), OPL Studio (Van Hentenryck 1999), 
and the Mosel language (Columbani and  Heipcke, 2002).  Integration allows one to attack 
problems in which some of the constraints are better suited to an MILP-like approach (perhaps 
because they have good continuous relaxations) and others are better suited for a CP approach 
(because they “propagate well”).  This is particularly true of supply-chain problems, in which 
constraints relating to resource allocation, lot sizing, routing and inventory management may 
relax well, while constraints related to sequencing, scheduling and other logical or combinatorial 
conditions may propagate well. In the context of scheduling problems, these models perform the 
assignment of jobs to machines with mixed-integer programming constraints, while the 
sequencing of jobs is performed with constraint programming. The motivation behind the former 
is to remove "big-M" constraints and exploit the optimization capability of mixed-integer 
programming. The motivation behind using the latter is to exploit the capability of constraint 
programming for effectively handling feasibility subproblems, as well as sequencing constraints. 
Hybrid methods have shown in some problems outstanding synergies that lead to order 
magnitude reductions in computation (Jain and Grossmann, 2001; Maravelias and Grossmann, 
2004; Hooker 2003; Hooker et al. 1999; Hooker and Ottosson 2003). 
 
Nonlinear programming. In order to develop real-time optimization models as part of the 
Enterprise-wide Optimization models for process industries (energy, chemicals, and materials) 
high fidelity simulation models are required that provide accurate descriptions of the 
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manufacturing process. Most of these models consist of large sets of nonlinear equality and 
inequality constraints, which relate manufacturing performance to designed equipment capacities, 
plant operating conditions, product quality constraints, and operating costs. The sensitivity of 
these degrees of freedom to higher level decisions can also be exploited by an integrated 
optimization formulation. The development and application of optimization tools for many of 
these nonlinear programming (NLP) models (Nocedal and Wright, 1999) has only recently been 
considered (see Biegler et al., 2002).  
 
An important goal in EWO is the integration of these nonlinear performance models to determine 
optimal results from IT tools. This research task is essential because these performance models for 
real-time optimization ensure the feasibility of higher level decisions (e.g., logistics and planning) 
for manufacturing operations. Also, these models accurately represent operating degrees of 
freedom and capacity expansions in the manufacturing process. As a result, incorporation of these 
models leads to significantly superior results than typical linear approximations to these models.  
Several studies have demonstrated the importance of including NLP and MINLP optimization 
capabilities (Bhatia and Biegler, 1997, Jackson and Grossmann, 2003; Jain and Grossmann, 1998) 
and the significant gains that can be made in planning and scheduling operations. On the other 
hand, the research challenge is that nonlinear models are more difficult incorporate and to handle 
as nonlinear optimization problems because they introduce nonmonotonic behavior, 
nonconvexities and local solutions. In addition the treatment of local degeneracies and ill-
conditioning is more difficult and more computationally intensive optimization algorithms are 
required. The recent introduction of interior point (or barrier) methods for NLP (Byrd et al., 2000; 
Vanderbei and Shanno,1999; Waechter and Biegler, 2003) have shown significant improvements 
over conventional algorithms with active set strategies. Also, more recent convergence criteria 
have been improved with the introduction of filter methods (Fletcher et al., 2003; Waechter and 
Biegler, 2003), which rapidly eliminate undesirable search regions and promote convergence from 
arbitrary starting points.  
 
 
Mixed-integer Nonlinear Programming and Disjunctive Optimization. Developing the full 
range of models for EWO as given by problem (P) requires that nonlinear process models be 
developed for planning and scheduling of manufacturing facilities. This gives rise to mixed-
integer nonlinear programming (MINLP) problems since they involve discrete variables to 
model assignment and sequencing decisions, and continuous variables to model flows and, 
amounts to be produced and operating conditions (e.g. temperatures, yields). While MINLP 
optimization is still largely a rather specialized capability, it has been receiving increasing 
attention over the last decade. A recent review can be found in Grossmann (2002). A number of 
methods such as outer-approximation, extended cutting planes, and branch and bound have 
proved to be effective, but are still largely limited to moderate-sized problems. In addition there 
are several difficulties that must be faced in solving these problems. For instance in NLP 
subproblems with fixed values of the binary variables, the problems contain a significant number 
of redundant equations and variables that are often set to zero, which in turn often lead to 
singularities and poor numerical performance. There is also the possibility of getting trapped in 
suboptimal solutions when nonconvex functions are involved. Finally, there is the added 
complication when the number of 0-1 variables is large, which is quite common in planning and 
scheduling problems. 
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To circumvent some of these difficulties, the modeling and global optimization of Generalized 
Disjunctive Programs (GDP) seems to hold good promise for EWO problems. The GDP problem 
is expressed in terms of Boolean and continuous variables that are involved in constraints in the 
form of equations, disjunctions and logic propositions (Raman and Grossmann, 1994).  One 
motivation for investigating these problems is that they correspond to a special case of hybrid 
models in which all the equations and symbolic relations are given in explicit form. An important 
challenge is related to the development of cutting planes that provide similar quality in the 
relaxations as the convex hull formulation without the need of explicitly including the 
corresponding equations (Sawaya and Grossmann, 2005). The other challenge is that global 
optimization algorithms (Floudas, 2000; Sahinidis, 1996) can in principle be decomposed into 
discrete and continuous parts, which is advantageous as the latter often represents the major 
bottleneck in the computations (e.g. through spatial branch-and-bound schemes; see Lee and 
Grossmann, 2001). Finally, the extension to dynamics of these models (e.g. Barton and Lee, 
2004) should provide computational capabilities that are required to model real-time problems. 
 
Computational Grid. Solving the large-scale EWO models will require significant 
computational effort.  To achieve the goal of integrating planning across the enterprise, advances 
in algorithms and modeling must go hand-in-hand with advances in toolkits that enable 
algorithms to harness computational resources.  One promising approach that has emerged over 
the last decade is to deliver computational resources in the form of a computational grid, which 
is a collection of loosely-coupled, (potentially) geographically distributed, heterogeneous 
computing resources.  The idle CPU time on these collections is an inexpensive platform that can 
provide significant computing power over long time periods. For example, consider the project 
SETI@home (http://setiathome.ssl.berkeley.edu/), which since its inception in the mid 1990’s 
has delivered over 18,000 centuries of CPU time to a signal processing effort.  A computational 
grid is similar to a power grid in that the provided resource is ubiquitous and grid users need not 
know the source of the provided resource.  An introduction to computational grids is given by 
Foster and Kessleman (1999).  An advantage of computational grids over traditional parallel 
processing architectures is that a grid is the most natural and cost-effective manner for users of 
models and algorithms to obtain the required computational resource to solve EWO problems.   
 
To allow a larger community of engineers and scientists to use computational grids, a number of 
different programming efforts have sought to provide the base services that grid-enabled 
applications require (e.g. Foster and Kesselman, 1997 and Livny et al., 1997).  A promising 
approach would seem to use and augment the master-worker grid library MW (Goux et al. 2001).  
The MW library is an abstraction of the master-worker paradigm for parallel computation.   MW 
defines a simple application programming interface, through which the user can define the core 
tasks making up this computation, and the actions that the master takes upon completion of a 
task.  Once the tasks and actions are defined by the user, MW performs the necessary actions to 
enable the application to run on a computational grid (such as resource discovery and acquisition, 
task scheduling, fault-recovery, and inter-process communication). 
 
 MW was developed by the NSF-funded metaNEOS project and used to solve numerical 
optimization problems of unprecedented complexity (e.g. Anstreicher et al. 2002, Linderoth and 
Wright, 2003).  A major research direction here would be the development and testing of 
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decomposition-based and branch-and-bound based algorithms for EWO models.  The MW 
toolkit has already been used with great success to parallelize both decomposition-based 
algorithms (e.g. Linderoth and Wright, 2003) and also spatial branch-and-bound algorithms (e.g. 
Goux and Leyffer, 2003, Chen, Ferris, and Linderoth, 2001).  However, for EWO the current 
functionality in the MW toolkit is not sufficient.  The simple master-worker paradigm must be 
augmented with features that improve its scalability and information sharing capabilities to be 
able to solve the EWO models we propose.   
 
Illustrative examples 
 
In this section we present four examples that illustrate the four challenges cited in this paper 
on problems encountered in the area of Enterprise-wide Optimization. Example 1 deals with 
a multi-site planning and distribution problem that incorporates nonlinear process models, 
illustrating the modeling challenge. Example 2 describes the simultaneous optimization of 
the scheduling of testing for new product development and the design of batch manufacturing 
facilities. This example illustrates the challenge of multi-scale modeling given the dissimilar 
nature of the activities and the need of combining a detailed scheduling model with a high 
level design model. Example 3 illustrates the third challenge with the design and planning of 
off-shore gas field facilities under uncertainty. Finally, Example 4 deals with a short term 
scheduling problem that makes use of a hybrid model that combines mixed-integer linear 
programming and constraint programming. This example illustrates the challenge for 
developing new algorithms. We should note that while the examples presented are rather 
modest in size compared to what ideally one would like to strive for in EWO, examples 1 and 
3 correspond to real world industrial problems. 
 
Example 1. 
This example deals with the production planning of a multi-site production facility that must 
serve global markets (see Fig. 4). The sites can produce 25 grades of different polymers. 
Given forecasts of demands over a 6 to 12 month horizon the problem consists of 
determining for each week of operation what grades to produce in each site and the 
transportation to satisfy demands in the various markets. An important feature of this 
problem is that nonlinear process models are required to predict the process and product 
performance at each site.  
 
Neglecting effects of changeovers, the problem of optimizing the total profit can be 
formulated as a multiperiod NLP problem. The difficulty is that the size of the problem can 
become very large. For instance a 12 month problem involves 34,381 variables and 28,317 
constraints. To circumvent this problem Jackson and Grossmann (2003) developed a 
temporal decomposition scheme based on Lagrangean relaxation. The authors showed that 
much better results could be obtained compared to a spatial decomposition (see Fig. 5), and 
that the CPU times could be reduced by one or two orders of magnitude for optimality 
tolerances of 2-3%. The reason CPU times are important for this model is that this allows one 
to use it in real time for demand management when deciding what orders to accept and their 
deadlines. 
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Fig. 4. Multi-site planning for polymer production 

 

 
 
Fig. 5.Predicted  production and inventory plans for one of the sites 
 
 
Example 2. 
This problem deals with the case where a biotechnology firm produces recombinant proteins 
in a multipurpose protein production plant. Products A, B, D, and E are currently sold while 
products C and F are still in the company’s R&D pipeline. Both potential products must pass 
successfully 10 tests before they can gain FDA approval (see Fig. 6). These tests can either 
be performed in-house or else outsourced at double the cost. When performed in-house, they 
can be conducted in only one specific laboratory. Products A-C are extracellular, while D-F 
are intracellular. All proteins are produced in the fermentor P1 (see Fig. 7). Intracellular 
proteins are then sent to the homogenizer P2 for cell suspension, then to extractor P3, and last 
to the chromatographic column P4 where selective binding is used to further separate the 
product of interest from other proteins. Extracellular proteins after the fermentor P1 are sent 
directly to the extractor P3 and then to the chromatograph P4.  
 
The problem consists of determining simultaneously the optimal schedule of tests and their 
allocation to labs, while at the same time deciding on the batch plant design to accommodate 
the new proteins. Here two major options are considered. One is to build a new plant for 
products C and D (assuming both pass the tests), the other is to expand the capacity of the 
existing plant. This problem was formulated as an MILP problem (Maravelias and 
Grossmann, 2001), involving 612 0-1 variables, 32184 continuous variables and 30903 
constraints. Here again one option is to solve simultaneously the full-size MILP, while the 
other is to decompose the problem into the scheduling and design functions using a 
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Lagarngean relaxation technique similar to the one in Example 1. The schedule predicted for 
the tests is shown in Fig. 8(a). In Fig. 8(b) it can be seen that the model selects to expand the 
capacity of the various units rather than building a new plant. Also, since the model accounts 
for the various scenarios of fall/pass for C and F, it  predicts that products D and E be phase-
out in the case that the two new proteins obtain FDA approval. 
 

23

4

567

8

910

1
20

1112

13

141516

17

1819

Product CProduct F

23

4

567

8

910

1
20

1112

13

141516

17

1819

Product CProduct F

 
 
Fig. 6. Precedence tests for new proteins F and C. 
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Fig. 7. Multistage batch plant for protein manufacturing 
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Fig. 8. (a) Optimal schedule and allocation for testing, (b) optimal capacity expansion of 
plant in Fig. 6. 
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Example 3, 
This problem deals with the design and planning of an off-shore facility for gas production. It 
is assumed that a superstructure consisting of a production platform, well platforms (one for 
each field) and pipelines is given (see Fig. 9).  It is also assumed that for some of the fields 
there is significant uncertainty in the size and initial deliverability (production rate) of the 
fields. The problem consists of determining over a given time horizon (typically 10-15 years) 
decisions regarding the selection and timing of the investment for the installation of the 
platforms, their capacities and production profiles.  
 
Goel and Grossmann (2003) developed a mixed-integer optimization model assuming 
discrete probability distribution functions for the sizes and initial deliverabilities.  Also, the 
model was simplified with a linear performance model to avoid the direct use of a reservoir 
simulation model. The optimization problem gives rise to a very difficult stochastic 
optimization problem, which has the unique feature that the scenario trees are a function of 
the timing of the investment decisions. Goel and Grossmann (2003, 2005) have developed 
two solution methods, a heuristic and a rigorous branch and bound search method for solving 
this problem. The example in Fig. 10 involves 6 fields over 15 years, with two of the fields 
having uncertain sizes and deliverabilities. If one were to solve directly the deterministic 
equivalent problem in which all scenarios are anticipated this would give rise to a very large 
multiperiod MILP model with about 16281 0-1 variables and 2.4 million constraints which is 
impossible to solve directly with current solution methods. Fortunately the methods by Goel 
and Grossmann circumvent the solution of such a large problem. The solution is shown in 
Table 1, which postpones the investment in the uncertain fields to years 5 and 7, with an 
expected NPV of $146 million and a risk of less than 1% that the NPV be negative. 
Interestingly, if one simply uses mean values for the uncertain parameters, the platforms at 
the uncertain fields are installed in period 1 and the financial risk increases to 8%. Obviously, 
in practice models like these would be solved periodically by updating them with new 
information on the fields. 
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Fig. 9. Infrastructure for off-shore gas production 
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Fig. 10. Example with uncertain gas fields D and E. 
 
 

Table 1. Solution of stochastic model for Fig. 10. 
 

$146.32 MillionENPV

DYear 7

EYear 5

PP, A, B, C, FYear 1

Proposed Solution

$146.32 MillionENPV

DYear 7

EYear 5

PP, A, B, C, FYear 1

Proposed Solution

 
Example 4. 
This example deals with the scheduling of a batch process shown in Fig. 11 using the State-
Task network representation in which circles represent material nodes with various storage 
options (finite, unlimited, zero-wait, no storage), and the rectangles represent operational 
tasks that must be performed (e.g. mixing, reaction, separation). This batch process produces 
four different products, P1, P2, P3 and P4. Note that 8 units are assumed to be available for 
performing the operations of the various tasks. Of course not all units can perform all tasks, 
but only a subset of them. Given data on processing times for each task as well as on the 
mass balance, the problem consists of determining a  schedule that can produce 5 tons of the 
four products and that minimizes the makespan (completion time). If this problem is 
formulated with a continuous time approach such as the one by Maravelias and Grossmann 
(1993) in order to accommodate arbitrary processing times, the corresponding MILP cannot 
be solved after 10 hours of CPU-time. This can be qualitatively explained by the fact that 
scheduling and MILP problems are NP-hard. To address this difficulty, however, Maravelias 
and Grossmann (2004) developed a novel hybrid solution method that combines MILP with 
constraint programming. Using such a technique the problem was solved to rigorous 
optimality in only 5 seconds! This example then shows the importance of special solution 
methods that effectively exploit the structure of scheduling problems. 
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Fig. 11. State-task network for batch process manufacturing products P1, P2, P3, P4. 
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Fig. 12. Optimal schedule with makespan of 15 hours. 
 
 
Concluding remarks 
 
This paper has provided an overview of the emerging area of Enterprise-wide Optimization that 
is driven by needs of the process industries for reducing costs and remaining competitive in the 
global marketplace. Some of the major challenges have been highlighted, and several examples 
presented to illustrate the nature of the applications and the problems that are faced.  
 
It is hoped that this paper has shown that EWO offers new and exciting opportunities for 
research to chemical engineers. While EWO lies at the interface of chemical engineering 
(process systems engineering) and operations research, it is clear that chemical engineers can 
play a major role not only in the modeling part, but also in the algorithmic part given the strong 
and rich tradition that chemical engineers have built in mathematical programming.  Thus, in 
collaboration with operations researchers, chemical engineers should be well positioned for 
developing novel computational models and algorithms that are to be integrated with 
coordination and decomposition techniques through advanced computing tools. This effort 
should help to expand the scope and nature of EWO models that can be effectively solved in 
real-world industrial problems. These models and methods have the potential of providing a new 
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generation of analytical IT tools that can significantly increase profits and reduce costs, thereby 
strengthening the economic performance and competitiveness of the process industries.  
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