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Abstract 
 
 The control strategy of Fuel Cell/Gas Turbine Hybrid power plants plays a significant role 
in maximizing system performance as well as ensuring the protection of equipment for maximum 
plant life.  The primary objective of this paper is the development and solution of a dynamic 
optimization framework for Fuel Cell/Turbine Hybrid power plants.  Optimal control of load 
changes requires optimal dynamic scheduling of setpoints and feedforward control moves for the 
system’s controllers.  Based on a dynamic Simulink model, a modular and flexible AMPL/IPOPT 
optimization framework that is easily adaptable to different scenarios and/or process flow 
diagrams has been developed.  Using this framework, dynamic optimizations for various 
scenarios, such as increasing and decreasing load changes at different rates have been 
performed.  
 
 
Introduction 
 
 The dynamic operation and control of Fuel Cell/Gas Turbine (FC/GT) Hybrid power 
plants requires a synergy of operation among subsystems, increased reliability of operation, and 
reduction in maintenance and downtime.  The control strategy plays a significant role in system 
stability and performance as well as ensuring the protection of equipment for maximum plant life 
[1].  The main goal of this study is to develop and implement a dynamic optimization framework 
for FC/GT power generating plants.  Optimal control of load changes requires dynamic 
scheduling of setpoints and feedforward control moves for the system's controllers.  To build 
feedforward action into the conventional proportional plus integral based feedback control, a 
technique is used where, given a desired load profile Pd, the setpoints and feedforward control 
signals are found via dynamic optimization [2]. 
 
 Figure 1 shows the internally reforming Direct FuelCell/Turbine (DFC/T) system selected 
for this study. This system can be divided into two subsystems:  the molten carbonate fuel cell 
system shown on the top and the open and externally heated  gas turbine system shown on the 
bottom.  Fresh air is compressed, heated in two stages, and then expanded in the gas turbine.  
Purified water humidifies natural gas and is pre-heated to anode inlet conditions.  Methane is 
reformed in the fuel cell and its chemical potential is converted to electrical energy.  The anode 
exhaust, which contains some unreacted fuel, is mixed with the turbine exhaust and sent to a 
catalytic oxidizer.  Before being sent to the cathode, the hot oxidizer exhaust passes through a 
high temperature recuperator (HTR) that heats the compressed air to turbine inlet conditions.  



Cathode exhaust, after preheating the anode inlet, preheats the compressed air and finally 
provides heat to evaporate water in the humidifier.  
 

 
Figure 1:   Atmospheric DFC/T hybrid process. 

 
 The base system has been modeled in MATLAB and Simulink via dynamic lumped 
capacitance models.  As this is a truly large-scale optimization problem, this model is 
reformulated in AMPL [3,7], a mathematical programming modeling language well suited for 
such problems.  AMPL also provides the necessary first and second derivatives which aid in 
convergence of nonlinear programming (NLP) solvers.  The specific NLP solver that we will use 
for dynamic optimization studies is the interior point solver IPOPT [4].  The main reason for 
choosing IPOPT over an active set sequential quadratic programming (SQP) solver is that this 
power generation system has numerous inequality and bound constraints, and the number of 
such constraints increases with finer discretization.  This necessitates the use of an interior point 
solver which overcomes the combinatorial bottleneck of choosing the correct active set.  IPOPT 
is a state-of-the-art interior point NLP solver that has been tested extensively.  It can also be 
tailored to handle complementarity constraints which arise in the actuator and the heat 
exchanger units. 
 
 We will also present ways of handling numerical difficulties that are frequently 
encountered in such systems.  Some of these include consistent reformulation of index-2 
differential algebraic equations that arise through chemical equilibrium constraints in the stack 
model, complementarity constraints that arise in modeling saturation blocks (e.g., actuator output 
is constrained to [0,1]) and heat exchangers (via number of transfer units formulations), and 
numerical schemes suited for stiff differential equations.  The problem formulation is discretized 
via orthogonal collocation at Radau points.  This is known to handle stiff differential equations 
well. Recently we have proved that approximations of optimal control problems using Radau 
collocation converge rapidly to the true solution as the discretization size is made finer [5].  As 
the models deal with quantities of different magnitudes (e.g. compositions, temperature, 
enthalpies), scaling is necessary for efficient optimization. 



 
 We set up generalized optimization models in AMPL for specified dynamic load changes 
at a given rate.  The optimization is constrained by plant dynamics, as well as input and output 
restrictions.  For the optimization purposes, some of the process's actual controllers are open 
loop.  The control moves and outputs are determined by the optimizer, and then used as 
feedforward control moves and setpoints for the individual control loops.  The objective of the 
optimization is to minimize the deviations of the control move and output from the desired 
values.  The desired setpoint trajectory for the net plant power is a function of time. 
 
 Using this framework, optimization is performed and feedforward control moves and 
setpoints are scheduled based on the off-line optimization results.  The final aim is to create a 
database of load change trajectories.  We will present a case study that demonstrates that this 
work can facilitate optimal trajectories for closed loop control. 
 
 
Optimization Model 
 
 The dynamic models’ differential algebraic equations (DAEs) were discretized using 
Radau collocation.  Using the method of Mattson and Soderlind [8], the stack and preconverter 
models were reformulated from an index-2 DAE system to an index-1 DAE with consistent initial 
conditions. The reformulation method is summarized next. 
 
 The DAE system of the stack model (mass and energy balances) is given by: 
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where Na and Nc are the anode and cathode molar flowrates, respectively, xa and xc are the 
anode and cathode mole fractions vectors, respectively, K1 and K2 are the equilibrium constants 
for the reformation and water gas shift reactions, respectively, T is the absolute temperature, and 
P the absolute stack pressure. 
 
 The first step in the reformulation is the introduction of new algebraic variables: 

 
dt
dyy =  

 This transformation converts the above system to an algebraic equation: 
 ),(),( tyfytyM =  (3) 
 
 The two algebraic rate equations r1 and r2 in (2) are differentiated with respect to the 
absolute temperature T 
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and are added to the algebraic system (3).  Because two equations were added, two other 
equations need to be eliminated, e.g., from the anode mass balance.  In this case, the equations 
for hydrogen and methane, xa,1 and xa,2, were eliminated from the set of equations (3).  These 
quantities can be calculated directly from the algebraic equations.  A new set of variables are 
defined by the following equations: 
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resulting in a set of  differential equations: 

z
dt
dz

=
 

 
 The initial conditions for the differential variables, z(0), can now be set independently 
and the algebraic variables, r1, r2, xa,1, xa,2 and y  can be solved from (3) – (5).  
To make the DAE system consistent with the constraint of  
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In turn, a third equation (mass balance ODE for xa,3) was eliminated.  
 
 To improve the calculation efficiency and accuracy in AMPL, the DAE system is scaled 
using the following techniques: 
 
1. The models consist of different variables of varying scales.  To facilitate convergence of the 

optimization routine to meaningful values, the variables and the constraints had to be scaled. 
Instead of using individual scaling factors, all variables and constraints of the stack, catalytic 
oxidizer, and pre-converter models were scaled using a single scaling factor θ 
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where θ=1000, h is the enthalpy, and Cp is the heat capacity. 
 

2. Because K1 and K2 are very small in magnitude, a logarithmic formulation is used for efficient 
numerical calculations.  Rather than K1 and K2, their logarithms are used as variables:  
 4,5,3,21, ln aaaa xlogxlogxlogKxlog −++=

( )
 (8)  
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Problem Definition 



 
 With the AMPL models in place, the next step is dynamic optimization.  The 
optimization model was used to track a 90 kW zigzag power ramp from the nominal 300 kW 
down to 210 kW within 30 minutes and then back up to the nominal operating point. 
 
 To achieve these desired trajectories, four conventional PI control loops of the DFC300/T 
simulation are opened and the corresponding manipulated variables are determined via dynamic 
optimization:  Stack current density, high temperature recuperator (HTR) and oxidizer bypass 
fractions, and micro turbine terminal voltage.  The bypass fractions are bounded between zero 
and one, where zero means that the unit is completely bypassed and one means that all flow 
passes through the unit. 
 
 The objective function is a minimization of the power tracking error. Auxiliary terms in 
the objective function force the control variables to be constrained within each temporal mesh.  
A 2-point collocation scheme is used for discretization. 
 
 
Results 
 
 Figure 2 shows the total system and the stack power as well as the normalized current 
density.  Current density is the input with the biggest impact on the stack power.  During the 
power down-ramp there is an initial offset caused by improper initialization.  During the power 
up-ramp these offsets disappear and the desired total power setpoint ramp is tracked perfectly.  
Stack power closely follows the current density while turbine power shows the same trends as the 
oxidizer temperature. 
 
 Figure 3 shows on the left the temperature profiles of stack and cathode inlet as well as 
the HTR bypass fraction which has the biggest influence on the cathode inlet temperature.  The 
dotted lines are the allowable bounds on the cathode inlet temperature.  On the right, the 
oxidizer temperature and the oxidizer bypass valve trends are shown.  As the bypass valve closes, 
the temperature goes up.  This trend correlates with the turbine power because a higher oxidizer 
temperature results in a higher turbine inlet temperature and therefore a higher turbine power. 
 
 Figure 4, finally, shows the micro turbine speed and its normalized control variable.  The 
drop in turbine speed at 30 minutes results in an increased power output.  This is due a 
maximum in the power vs. speed characteristic of the micro turbine at low turbine inlet 
temperatures.  At high turbine inlet temperatures, the power monotonically increases with speed. 
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Figure 2:   Stack, turbine, and system power vs. normalized current density.  
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Figure 3:   Left: Stack and cathode inlet temperature vs. high temperature recuperator  

bypass fraction. Right: Oxidizer temperature vs. oxidizer bypass fraction.  
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Figure 4:   Turbine speed vs. normalized turbine terminal voltage.  

 
 
Conclusions 
 
A modular dynamic optimization framework for hybrid fuel cell/gas turbine power plants has 
been developed in AMPL and solved using IPOPT.  Dynamic optimizations for dispatched load 
profiles were performed.  This includes both increasing and decreasing ramps over the operating 
range.  The presented results show that the developed optimization technique can control the 
plant as desired.  
 
Future work will expand these optimizations to the entire operating range as well as perform 
ramps at various rates as well as local variations at nominal operating points.  This data will be 
utilized in improving control strategies for FCE’s ALPHA prototype of a DFC/T sub-megawatt 
power plant. 
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