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Abstract 
 
 The problem of calculating the effectiveness factor, for a porous slab of catalyst pellet 
under non-isothermal conditions, was revisited. An exact formal analytical solution was 
obtained for an nth-order, exothermic and irreversible chemical reaction. A closed analytical 
formula was obtained (Muñoz Tavera, 2005) for the very fast reaction limit, and its applicability 
was numerically tested for a significant range of values of the parameters involved in the 
model, i.e the thermicity group ß and the Arrhenius group γ. 
 
 
1. Introduction 
 

A wide variety of chemical processes involve the use of heterogeneous catalytic 
reactors as a core unit operation. Traditional chemical engineering applications (Lee, 1985; 
Satterfield, 1970), like hydrogenation of organic compounds, oxidation, dehydrogenation, 
polymerization and catalytic cracking, among many others, are performed by contacting a fluid 
(gas or liquid) reacting phase with solid porous particles, which possess a high surface-volume 
ratio to enhance contact between the fluid phase and the actual catalytic agent, typically a 
metal (Ni, Pd, Fe, Cu, Pt) or metal oxide. Analogous situation arises in some biochemical 
engineering processes (Bucholz, 1982; Engasser and Horvath, 1976), in particular in 
immobilized enzyme reactors, where enzymes are fixed to a porous matrix, such as agarose. 

 

 From a chemical engineering perspective, only macroscopic variables in the reactor 
are accessible for both measurement and control. However, in the processes described above, 
chemical or biochemical catalytic reactions take place at the surface of solid particles, usually 
at the pore surfaces in the particle interior, and consequently they depend on microscopic 
distributed parameters, such as concentration and temperature, which are related to the 
macroscopic values through a combination of mass and heat transfer resistances, in addition 
to the chemical reaction itself. A simplified analysis of the real situation is to consider two 
resistances in series (Lee, 1985; Satterfield, 1970), the first one for transport through the 
external boundary layer which surrounds the particle, and the second one due to the 
combination of diffusion and reaction at the interior of the pores. At steady state, the over all 
reaction rate will be controlled by the higher resistance, i.e. the slowest step. For the case in 
which reaction and diffusion at the interior of the pores controls, the theory of effectiveness 
factors can be applied. Originally developped independently by Damköhler (1935), Thiele 



 

(1939) and Zeldovich (1939), this theory has become an important and useful concept in 
heterogeneous reactor analysis, design and control for many years. 
 Extensive theoretical studies have been performed for the calculation of effectiveness 
factors by assuming isothermal conditions and different reaction rates (Bischoff, 1965), and 
analytical expressions can be obtained for typical cases: simple nth-order, Langmuir isotherm 
(Chu and Hougen, 1962) assuming simple slab one-dimensional geometries. Other shapes 
(spheres, cylinders) have been studied (Amundson and Luss, 1967) in the context of the first-
order reaction.  
 
 

Under conditions when intra-particle thermal resistance becomes important, i.e. non-
isothermal pellet, the analysis becomes more complicated due to the unavoidable coupling 
between heat and mass transfer equations. Much theoretical work has been performed to 
study questions related to uniqueness and stability of solutions (Aris, 1969; Drott and Aris, 
1969; Hlaváček et al., 1969a,b; Luss, 1968) 

 
 

Despite the inherent mathematical complexity of general solutions described above, in 
many practical cases the internal temperature gradients are comparatively small (Hlaváček et 
al., 1969a) (but not necessarily negligible), and for very fast irreversible reactions the 
concentration of reactant at the center of the pellet will be close to zero, so uniqueness of 
solutions in those cases is guaranteed even on physical grounds. In this context, simple 
empirical analytical expressions for the temperature dependence of the effectiveness factor in 
the first-order reaction have been reported (Liu, 1969). 

 
 

An exact formal analytical solution was developed (Muñoz Tavera, 2005) for the non-
isothermal effectiveness factor in a slab geometry, for the case of irreversible and exothermic 
nth-order reaction rate. This general formal expression is specialized for the limit of a very fast 
chemical reaction, where the concentration at the center of the slab can be assumed to be 
close to zero, obtaining an analytical formula suitable for direct calculations.  

 
 
2. Theory 

 
 

2.1.  Definition of the effectiveness factor 
 
 For a porous catalyst pellet, where the controlling resistance is assumed to be 
diffusion and chemical reaction occurring at the interior pores, the effectiveness factor is 
defined by the expression: 
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where R represents the volumetric reaction rate inside the pellet pores, and Vpellet is the total 
volume of the catalyst pellet. 
 
 
 In what follows, we shall assume that C is the reactant concentration at the interior of 
the pellet pores. We shall also consider effective transport properties inside the pores: Deff and 
keff will be the effective diffusion coefficient and thermal conductivity. The reaction enthalpy will 
be ΔHR, and the stoichiometric coefficient (negative) for the reactant will be νc. 
 
 

Under steady-state conditions, the mass and energy balance equations are: 
 

Mass Balance:  RCD ceff ν=∇− 2        (2) 

Energy Balance: ( )RHTk Reff Δ−=∇− 2       (3) 
 
 
 Substituting the reaction rate from equation (2) into the effectiveness factor definition 
(1), and after applying Gauss’ Theorem: 
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Expression (4) is in general valid for any geometry. However, in many applications the 
interesting cases are simple geometries (slabs, cylinders, spheres) whose symmetry allows us 
to assume that the concentration gradient is independent of the position over the surface. 
Under this last assumption, equation (4) can be reduced to: 
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2.2. Pellet with the shape of a slab 
 
 Consider a catalyst pellet with the shape of a slab, of thickness 2L, with L2 << Spellet. 
For this geometry, the mass and energy balance equations (2,3) reduce to the following 
expressions: 

Mass Balance   R
dx
CdD ceff ν=− 2

2

     (6) 

Energy Balance   ( )RH
dx
Tdk Reff Δ−=− 2

2

     (7) 

 
The boundary conditions for this system of differential equations are: 
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 From equations (6) and (7), it is possible to eliminate the reaction rate. After 
integration subjected to boundary conditions (I) and (II), in dimensionless form one obtains: 
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Note that for an exothermic reaction β > 0. 
 

 
The non-dimensional group β has been referred in the literature (Satterfield, 1970) as 

thermicity or heat generation function. It represents the ratio between the rate of heat 
generation due to the chemical reaction, and the rate at which heat is transported by thermal 
conduction mechanisms. The thermicity is then a direct measure of non-isothermal effects, and 
it follows from (8) that, for a very fast reaction 0≈centerf :  
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It can be concluded from (9) that the limit 0→β  represents the isothermal pellet case, 

while non-isothermal effects becomes more important as the thermicity value increases. 
However, even for highly exothermic reactions (Hlaváček, 1969a ; Satterfield, 1970), the 
thermicity rarely exceeds 0.2. 

 
 

Table 1: Experimental values (Hlaváček et al., 1969a) for the parameters involved  
in the model  in some industrial chemical reactions 

  

Reaction β γ γ β φ0

NH3 synthesis 0.000061 29.4 0.0018 1.2
Oxidation of CH3OH to CH2O 0.0109 16 0.175 1.1
Synthesis of vinylchloride 0.25 6.5 1.65 0.27
Hydrogenation of ethylene 0.066 23-27 1-2.7 0.2-2.8
Oxidation of ethylene 0.13 13.4 1.76 0.08
Dissociation of N2O 0.64 22 1.0-2.0 1.0-5.0
Hydrogenation of benzene 0.12 14-16 1.7-2 0.05-1.9
Oxidation of SO2 0.012 14.8 0.175 0.9



 

2.3. Reaction rate of arbitrary integer order 
 
 Let’s restrict the analysis to a nth-order reaction kinetics, where n ≥ 0 is an integer 
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and κs is the value for the kinetic constant at surface temperature Ts. It can be shown (Muñoz 
Tavera, 2005) that for this reaction rate, an exact expression for the effectiveness factor is 
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 By defining the functional H[f,fcenter] as: 
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it can be shown (Muñoz Tavera, 2005) that it satisfies the identity 
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 Note that by means of eq.(13), the non-dimensional concentration at the center of the 
slab fcenter, is defined as a function of the generalized Thiele modulus at isothermal conditions 
φ0. 
 
 
 Using the same notation, the effectiveness factor in (13) can be expressed as: 
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2.4. Exact Analytical Expression 
 

 As is demonstrated in detail in the Appendix, a novel closed analytical expression for 
the integral (20) has been developed (Muñoz Tavera, 2005), in terms of well-known special 
functions, the exponential integrals Ek (Abramowitz and Stegun, 1970a). 
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 If a very rigorous calculation is desired, expression (15) can be substituted into (13), 
and performing a numerical integration, the exact value of the non-dimensional concentration 
at the center of the catalyst pellet fcenter can be obtained, for any integer reaction order n ≥ 0 
and generalized Thiele modulus 0φ . The calculation requires an iterative procedure, due to the 
non-linear dependence between both parameters. Once fcenter is obtained, it is substituted in 
(14) to obtain the exact value of the non-isothermal effectiveness factor. 
 
 
 In the present work, a more practical approach is proposed, by assuming the case of a 
very fast reaction, where the approximate limiting condition 0≈centerf  can be applied.  Under 
this assumption, from the exact expression (14), the corresponding approximation for the 
effectiveness factor becomes 
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 Taking the corresponding limit in the exact analytical expression (15) 
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 To test the accuracy and validity of the limit (17), numerical calculations where 
performed to obtain the exact solutions φ0(fcenter) from equation (13), for small values of fcenter.  

 
 

Table 2 displays the results for the cases n = 1,2. Also shown is the relative error 
involved in the calculation of the effectiveness factor by using (17), compared with the exact 
expression (14), according to the formula: 
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 As expected on physical grounds, Table 2 reflects the fact that 0→centerf  as ∞→0φ . 
However, even for finite values of the generalized Thiele modulus and 0≠centerf , the relative 



 

error involved in calculating the effectiveness factor by using the analytical approximation (17) 
does not exceed 5% for most cases shown in Table 2. As the product γβ  increases, the 
minimum threshold min,0φ in the Thiele modulus to achieve an acceptable precision decreases. 
Recommended threshold values for the applicability of equation (17) are shown in Table 3. 
Comparing the values of the calculated Thiele modulus for the different cases presented in 
Table 2, with the experimental values for common industrial reactions presented in Table 1, it 
is concluded that the approximation (17) is applicable for many real cases.  
 
 

Table 2: Numerical solution of eq.(21) for ( )center0 fφ . Also shown is the relative error,  
as defined in eq.(27), involved in the calculation of the effectiveness factor  

by using (26), compared with the exact expression (22). 

 
 

 The other interesting feature that can be observed from the results presented in Table 
3, is that non-isothermal effects are strongly dependent on the values of the Arrhenius group γ. 
As was pointed out previously, in the isothermal limit it is expected that 10 →ηφ  for large 0φ . 

n=1 n=2
γ β fcenter φ0 |1−η(0)/η(fcenter)| φ0 |1−η(0)/η(fcenter)|

10-3 6.735 6.7E-7 8,116.5 6.9E-10
0.1 10-2 4.353 6.7E-5 122.23 1.1E-7

0.1 2.511 6.56E-3 6.845 6.7E-4
10-3 4.506 9.8E-7 1,746.4 1.1E-9

5 0.3 10-2 3.172 9.8E-5 33.754 1.1E-6
0.1 1.893 9.39E-3 5.296 1.03E-3
10-3 3.213 1.3E-6 717.537 1.6E-9

0.6 10-2 2.271 1.3E-4 15.0877 1.6E-6
0.1 1.386 1.26E-2 3.87786 1.48E-3
10-3 5.143 8.8E-7 5,223.8 9.6E-10

0.1 10-2 3.551 8.8E-5 55.484 9.5E-7
0.1 2.108 8.45E-3 5.890 9.0E-4
10-3 2.608 1.8E-6 638.65 2.3E-6

10 0.3 10-2 1.904 1.8E-4 17.363 2.2E-6
0.1 1.197 1.61E-2 3.329 1.98E-3
10-3 1.340 2.9E-6 200.791 4.3E-9

0.6 10-2 0.977 2.8E-4 5.777 4.2E-6
0.1 0.641 2.54E-2 1.774 3.62E-3
10-3 2.286 2.3E-6 1,504.1 3.1E-9

0.1 10-2 1.611 2.3E-4 17.040 3.1E-6
0.1 1.047 2.05E-2 2.906 2.62E-3
10-3 0.322 8.9E-6 50.853 2.0E-8

30 0.3 10-2 0.247 8.7E-4 1.507 1.9E-5
0.1 0.187 6.98E-2 0.520 1.37E-2
10-3 0.0417 1.6E-5 3.554 4.9E-8

0.6 10-2 0.0343 1.56E-3 1.736 4.7E-5
0.1 0.0282 0.121 0.0774 3.05E-2



 

However, due to internal temperature gradients, 0ηφ  raises up to 100 for zero-order, up to 50 
for first-order, and up to 30 for second-order kinetics, when large values of γ and β are 
attained. Those numbers represent correction factors to the isothermal limit 0/1 φη ≈ . This fact 
has been reported in previous numerical studies (Aris, 1969; Drott and Aris, 1969; Hlaváček et 
al. 1969a,b; Liu, 1969; Luss, 1968), and a dependence related to the product γβ  as been 
proposed (Hlaváček et al. 1969a,b; Liu, 1969). Such a dependence also becomes explicit in a 
low beta approximation to eq. (17) (Muñoz Tavera, 2005), with a proportionality of the 
effectiveness factor to the expression ( ) 2/)1( +− nγβ .  In agreement with this asymptotic result, a 
compensation tendency for non-isothermal effects is observed, according to the results in 
Table 3, for high values of the reaction order n.  
 

 
Table 3: Recommended treshold values for the generalized 
Thiele modulus, min,00 φ≥φ , to apply the formula (26) with a 

relative error not exceeding 1%, for first and  
second order kinetics. 

 
 

 
 
4. Conclusions 
 
 According to the standard theory for effectiveness factors, a novel rigorous 
mathematical result was derived for the case of a non-isothermal catalyst pellet, with the shape 
of a slab, for an exothermic irreversible reaction of nth-order. After this result is specialized for 
the case in which the reaction is very fast, and the concentration in the center of the slab is 
close to zero, an analytical expression was derived for this limit. This approximation was 
compared with numerical integration results, for different realistic values of the parameters 
involved in the model, showing good agreement for finite values of the generalized Thiele 
modulus. This analytical formula is relatively simple, involving well known special functions, 
and therefore is suitable for computational applications, like simulation and design. 
 
 
Notation 
 
 C Reactant concentration, mol m-3 
 Cs Reactant concentration at pellet surface, mol m-3 
 Deff Effective diffusion coefficient inside the pellet pores, m2 s-1 

n = 1 n = 2
γβ φ0,min φ0,min

0.5 2 6
1.5 1.5 4
3 1 2
6 0.8 1.5
9 0.2 0.6

18 0.03 0.09



 

 E Activation energy of the chemical reaction, J mol-1 

 f Dimensionless concentration 
fcenter Dimensionless concentration at the center of the slab 
ΔHR Reaction enthalpy, J mol-1 

 keff Effective thermal conductivity inside the pellet pores, W m-1 K-1 

 R Volumetric reaction rate, mol m-3 s-1 
 Ravg Average reaction rate, mol m-3 s-1 
 Rg Universal constant of gases, J mol-1 K-1 

 Rsurf Reaction rate at external surface conditions,  mol m-3 s-1  
 Spellet External surface of the pellet, m2 
 T Temperature, K 
 Tcenter Temperature at the center of the slab, K 
 ΔTmax Maximum temperature difference, K 
 Ts Temperature at the pellet surface, K 

Vpellet Total volume of the catalyst pellet, m3 
L Characteristic half thickness of the slab, m 
β Thermicity group, dimensionless 
φ0 Generalized Thiele modulus, dimensionless 
γ Arrhenius group, dimensionless 
η Effectiveness factor, dimensionless 
κs Kinetic constant for nth-order reaction at surface conditions, mol1-n m-3(1-n) s-1 

νc Stoichiometric coefficient, negative for reactant, dimensionless 
θ Dimensionless temperature 
θcenter Dimensionless temperature at the center of the slab 
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Appendix  
 
 The exact analytical integration for the function [ ]centerffH ,  was performed through the 
following steps 
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1. Rearrange the terms in the numerator: 
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2. Change of variable:  wz
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3. Change of variable: zx /1=  
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4. Binomial expansion: 
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5. Substitute (A5) into (A4): 
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6. Decompose the integrals in (A6) into two terms: 
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7. Apply the following change of variables to the first and second integrals in (A7), 

respectively:  
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From the definition of the Exponential Integral function (Abramowitz and Stegun, 

1970a): 
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8. Substituting the result (A10) into (A5), the final expression is obtained: 
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