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Introduction 
 

The transient flow behavior in the gas-solid fluidization system is complex. Although 
numerous experimental and theoretical studies have been conducted on this system, its real 
time, 3-dimensional flow structures are still far from full comprehension. The common 
measurement techniques using probes such as the optical fiber probe or the capacitance 
probe can only provide the local point flow properties in the bed. It is challenging, however, to 
develop non-intrusive techniques that are capable of performing real-time, 3-dimensional 
imaging of the multiphase flow field. This study reports the development of the first Electrical 
capacitance volume tomography (ECVT) and its applications to the 3-D non-intrusive 
measurements of the dynamic behavior of a gas-solid fluidized bed.  
 
3D ECVT with NN-MOIRT 
 

The ECVT involves tasks of collecting capacitance data from electrodes placed around 
the wall outside the vessel and reconstructing image based on the measured capacitance 
data. The capacitance is measured based on the Poison equation which can be written in 
three-dimensional space as:  
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where e(x,y,z) is the permittivity distribution; φ(x,y,z) is the electrical field distributions; ρ(x,y,z)  
is the charge density. The measured capacitance Ci of the i-th pair between the source and the 
detector electrodes is obtained by integrating Eq. (1): 
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where ΔVi is the voltage difference between the electrode pair; Ai is the surface area enclosing 
the detector electrode. Equation (2) relates the dielectric constant (permittivity) distribution, 
e(x,y,z), to the measured capacitance Ci.  
 

The image reconstruction process is an inverse problem involving the estimation of the 
permittivity distribution from the measured capacitance data. Since there is no analytical 
method for the non-linear inverse problem, linearization using the so-called sensitivity model is 
commonly applied (Huang et al., 1989; Xie et al., 1992). The sensitivity map is constructed by 
filling the j-th voxel with high permittivity and the rest is material of low permittivity, and solving 
numerically Eq. (2) based on the finite element method (FEM) using the OPERA-3D TOSCA 
software package (Vector Fields, 2001). For imaging a three-dimensional object, the sensitivity 
matrix has to have a three-dimensional variation, especially in the axial (z-axis) direction to 
differentiate the depth along the sensor length. Based on the sensitivity model, Eq. (2) then 
can be written in matrix expression as: 
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where C is the M-dimension capacitance data vector; G is N-dimension image vector; N is the 
number of voxels in three-dimensional image; and M is the number of electrode-pair 
combinations. Specifically, N is equal to n×n×nL, where n is the number of voxel in one side of 
image frame (layer); nL is the number of layer). The 3D volume image digitization is shown on 
bottom-left of Figure 1. The sensitivity matrix S has a dimension of M X N.  
 

The reconstruction problem involves finding methods for estimating the image vector G 
from the measurement vector C, and to minimize the error between the estimated and the 
predicted capacitance, C under certain conditions (criteria), such that  

CSG ≤       (4) 
The image reconstruction is an ill-posed problem, i.e. there are fewer independent 
measurements than unknown pixel values. Therefore, there is no unique solution for the 
inverse problem. There may be more than one or many possible estimations (answers). How 
close the estimation to the exact answer definitely depends on the definition of the error and 
the image algorithm. This is a common problem for all tomography reconstruction techniques. 
What we can do in an image reconstruction, which is not restricted to ECVT, is "to estimate an 
image vector (permittivity distribution in ECVT) from the measurement data (capacitance data 
in ECT), and minimize the error" (Herman, 1980). In ECVT, the error is defined as the 
difference between the measured capacitance data and the capacitance value calculated from 
estimated permittivity distribution. An iterative approach is usually employed to update the 
estimated permittivity distribution until maximum allowable error is reached. However, one 
single criterion such as the least square error as used in most kinds of iterative reconstruction 
techniques (Yang and Peng, 2003) does not necessarily give rise to the accurate image, since 
the least squared criterion does not contain any information concerning the nature of a 
‘desirable’ solution. Therefore, more than one objective function is required to be considered 
simultaneously in order to choose the ‘best compromise solution’ or the best probability of the 
answer among possible alternatives. The probability problem even worsens for noise 
containing capacitance data. Multi-criterion optimization using more than one objective function 
is required to reduce the possibility of alternative solutions, and hence reducing the non-
uniqueness of the problem in obtaining a more definitive solution. 
 

In this study, a multi-criterion optimization based image reconstruction technique 
developed earlier by the authors (Warsito and Fan, 2001) for solving the inverse problem for 
the 2D ECT is extended to solve the inverse problem for the 3D ECVT. A modified Hopfield 
neural network (Hopfield and Tank, 1985) is invoked to solve the optimization problem by 
minimizing the four objective functions: negative entropy function, least square errors, 
smoothness and small peakedness function, and 3D-to-2D matching function. The 3D ECVT 
image reconstruction is accomplished by introducing the 3D sensitivity matrix (Eq. (4)) into the 
NN-MOIRT algorithm. The image is reconstructed into a three-dimensional image (volume 
image) consisting of image voxels (volume pixels) in a number of frames (layers) instead of a 
single frame as in two-dimensional image reconstruction. The NN-MOIRT algorithm 
reconstructs simultaneously the volume image into 20×20×20 voxels from 276 capacitance 
data based on 12-electrode twin-plane sensor for simulation and 66 capacitance data obtained 
from 6-electrode twin-plane sensor for actual measurement. The details on the algorithm is 
described elsewhere (Warsito and Fan, 2001, 2003, 2005). The implementation of more than 
one objective functions thus yields a higher probability of obtaining an accurate solution 
(estimation) in the image reconstruction. This is especially the case for 3D reconstruction as 



 
there are much more number of voxels from the limited measurement data, i.e. there are 6160 
unknown permittivity inside the domain from only 66 or 276 available capacitance data.  
 

Figure 1 (first row) shows the three-dimensional reconstruction results of a sphere 
based on simulated capacitance data obtained by solving Eq. (2) given permittivity distribution 
of the objects. The second row of the figure shows a half portion of the sphere when entering 
the top part of the sensor. The diameter of the sphere is 0.5 of the diameter of the sensor 
which equals the whole dimension of the image. Excellent agreements between the 

reconstructed 3D images and the model objects are obtained in both images. The 
reconstruction results from actual measurement data are shown in the bottom row in Fig. 1 
using a spherical dielectric object with a diameter of 2.5 cm and a capacitance sensor with an 
inner diameter of 10 cm. The object is tethered to a thin non-conductive rope and is moving 
within the sensor. The sensor used for the actual measurement is a 6-electrode twin-plane 

 
Figure 1 Reconstruction results of the dielectric, spherical model objects: diameter 
= 0.5D0 (top), the model object of one-half sphere: diameter = 0.5D0 (middle), an 
actual dielectric sphere: diameter = 0.25D0 (bottom) 



 
sensor, less number of electrodes than the one used for simulated measurement as in Fig. 1. 
Despite the use of fewer electrodes, and hence a higher scanning rate, it can be seen from 
Fig. 1 that a clear image can still be obtained even though some distortions from the original 
spherical shape are observed due to  noise which is measured up to 20% (SNR about 30dB).   
 
Experiments 
 

The ECT comprises the capacitance sensor, sensing electronics for data acquisition, 
and a computer system for image reconstruction. The capacitance sensor array is a twin plane 
sensor using 6 electrodes for each plane. The geometry of the sensor is not necessarily of a 
rectangular shape as commonly employed for the 2-D ECT. The design of a sensor that 
provides distinct radial and axial variations in the electric field is critical for accurate 
measurements using the ECVT.  In the flow experiments, the center of sensor is located at 20 
cm above the distributors. The length of each electrode is 8 cm and thus, the total interrogation 
volume is 16 cm in length. The data acquisition system is from Process Tomography Limited 
(UK) and is capable of capturing image data up to 80 frames per second. There are 66 
combinations of independent capacitance measurements between electrode pairs from 12 
electrodes arranged in two planes. The image reconstruction and data post-processing are run 
on a Pentium 4 machine, 3 GHz and a memory of 2 GB.  
 

A fluidized bed of 0.1 m ID and 1.9 m in height with a porous plate distributor with a 
pore size of 20 μm and a fractional free area of 60% is employed in this study. A two-stage 
cyclone separates gas and particles and is installed in the freeboard of each fluidized bed. 
Details of the experimental setup have been reported elsewhere (Du et al., 2002). Both of the 
Geldart Group A particles (FCC catalyst with a mean diameter of 60 μm and a density of 1400 
kg/m3) and Group B particles (glass beads with a mean diameter of 200 μm and a density of 
2500 kg/m3) are employed in the experiments. 
 
Sample Results and Concluding Remarks 
 

Figure 2 shows the 3-dimensional image a bubble in a gas-solid fluidized bed with 200 
μm glass beads at a 
gas velocity of 0.2 
m/s. A bubble with 
spherical cap shape 
is clearly observed by 
the ECVT technique. 
Based on the time 
series of the 3D 
images of the gas-
solid fluidized bed, 
the dynamic flow 
characteristics of the 
bubbles including the 
bubble size and 
bubble velocity, and 
the flow pattern of the 
particles around the 

 
Figure 2 3-dimensional image of a bubble in a gas-solid fluidized bed with 
200 μm glass beads at a gas velocity of 0.2 m/s 



 
bubbles can be illustrated. The flow behavior of the voids in the turbulent regime can also be 
obtained by the 3D images obtained from the ECVT. 
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