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Abstract 

Control of blood glucose concentration in type-I diabetic patients in presence of meal 
disturbances has attracted the attention of many researchers in the recent past (Fisher, 
1991; Kwok et al., 1992; Gopinath et al., 1995; Parker et al., 1999).  The success of the 
control strategies proposed in the literature depends on the accuracy of the model used in 
the control frame-work (Parker et al., 1999). In this work, a data based model predictive 
control algorithm is developed to control the blood glucose concentration in the Type-I 
diabetic patients in the presence of meal disturbances under patient-model mismatch. A 
state space model with augmented states representing integrating type of disturbances is 
developed (Muske and Badgwell, 2002).  This augmented state space model is used for 
the future predictions and then in optimizing the future insulin infusion rate based on the 
previous blood glucose measurements and previous insulin infusion rates, using a model 
predictive control (MPC) framework.  The states along with the disturbances at each 
sampling instant are estimated using recursive form of Kalman filter.  Appropriate 
physical and physiological constraints are incorporated in the objective function of MPC 
to ensure feasible operating regime. Simulation studies are performed on three distinct 
patient models using Simulink®. The input-output data required for model identification 
has been obtained from the perturbation studies on patient-1. The mathematical model 
developed is used in the state estimation based linear model predictive control, which is 
employed on all three patients. The simulation results revealed that, the proposed control 
strategy is able to control the blood glucose concentration well within the acceptable 
limits in the presence of meal disturbances. It was also observed that performance of this 
strategy, even when large patient-model mismatch along with unmeasured disturbances, 
is quite encouraging.  With the technological advancements in infusion pumps, in vivo 
glucose sensors and microprocessor chips (Wilson and Gifford, 2005) it is possible to 
incorporate this robust control algorithm to build a portable insulin infusion control 
system that ensures normoglycemia in type-I diabetic patients.  
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1. INTRODUCTION 
 

Diabetes mellitus is a metabolic disorder with the inability of the pancreas to 
secrete sufficient insulin, the most important hormone regulating glucose metabolism.  
Inadequate secretion of insulin by the diabetic pancreas results in poor maintenance of 
normoglycemia (defined as blood glucose 70–100 mg/dl) with elevated blood glucose 
concentrations. Chronic hyperglycemia (arterial blood glucose >120 mg/dl) causes 
damage to the eyes, kidneys, nerves, heart and blood vessels.  

Particularly, type-I DM, known also as Insulin Dependent Diabetes Mellitus 
(IDDM), defines a group of patients that need exogenous insulin in order to prevent 
hyperglycemia. Conventional therapy of IDDM out-patients involves sub-cutaneous 
administration of exogenous insulin several times a day (two to four), self-monitoring of 
blood glucose levels (BGL), and insulin dose adjustment on the basis of the actual 
measurement, following individualized control tables defined by the physician.  As there 
is not feed-back employed in these open-loop insulin infusion strategies they may result 
in significantly abnormal BGL for long periods.   
 

With the developments in programmable extra corporeal and implantable insulin 
pumps as well as implantable non-invasive glucose concentration sensors, it has become 
practical to develop a closed-loop Insulin infusion device to reject the sudden spikes of 
BGL in the patient. 
 

The problem of IDDM management is very complex, due to the great inter- and 
intra-individual variability of patients’ response, and to the variety of factors that may 
determine fluctuations in the glucose metabolism (from diet to physical exercise, from 
stress to the insulin injection site). Moreover, given the quality of data collected during 
the patients’ self-monitoring, this challenge can be posed as disturbance rejection under 
unknown external disturbances and plant model mismatch.  
 

This problem has attracted the attention of control community for many years. A 
significant number of solutions are proposed towards the development of a closed-loop 
algorithm for insulin infusion (Cobelli and Mari, 1983; Fisher, 1991; Broekhuyse et al., 
1981). These approaches have utilized almost exclusively feedback control to maintain 
normoglycemia, even for the purpose of disturbance rejection.  Next generation 
algorithms used either explicit kinetic models or adaptive time series models for 
controller synthesis (Salzsieder et. al, 1985, Bellaji et al., 1995; Trajanoski et al., 1998; 
Kern et al., 1997).  Since these conventional algorithms do not allow reaching and 
maintaining near normal BGL without increasing the frequency of BG measurements or 
the risk of hyper- or hypoglycemic events, target BGL values are typically higher than 
desirable.  Hence, it is required to predict these events prior to their occurance and take a 
corrective action. 
     

In this work, model predictive control (MPC) is used for control of blood glucose 
concentration with insulin to ensure the normoglycemia, under a meal disturbance. MPC 



  

is successfully applied to other biomedical control problems, including blood pressure 
control (Kwok et al., 1992; Gopinadh et al., 1995) and anesthesia delivery ( Wada and 
Ward, 1995).  As MPC class of algorithms can incorporate constraint handling in multi-
input multi-output environment they are well suited for drug infusion problems with 
physical constraints (pumps, sensors) and physiological constraints (human).  MPC 
predicts the future glucose behavior based on the past insulin inputs and past glucose 
measurements and takes a corrective action for predicted deviation from normal BGL.  
 

The key component of these schemes is model accuracy. Some model based 
predictive control algorithms reported in the literature (Parker et al., 1999) for insulin 
infusion control used first principle models with identified parameters.  Despite their 
superior predictions, development of an accurate first principles model is a strenuous task 
and parameter identification becomes specific to each patient.  Another alternative is a 
data based model, which is easy to identify.  Typically, the model used in the model-
based controller is developed only once at the beginning of the controller 
implementation.   However, as an unknown disturbance enters the process, the 
deterministic model predictions become inaccurate. As the dynamics change with time, a 
large mismatch develops between the model and the process and the model predictions 
no longer reflect the actual system behavior. Under these conditions the controller 
performance and its robustness deteriorates and this may even destabilize the control 
loop.   An explicit compensative action is required to eliminate the steady-state offset 
caused by modeling error and unmeasured disturbances. 
 

In present study, a data based disturbance modeling approach is adopted with 
constrained state estimation based linear MPC (MPC/SE) control algorithm (Ricker 1990, 
1991).  If the characteristics of the unmeasured disturbances that are expected to disturb 
the process are known, one can estimate the disturbances along with the states. This 
relaxes the stringent requirement of efficient process modeling.  MPC/SE is based on 
Kalman filter, which explicitly accounts for the effects of the unmeasured disturbances 
on the current state estimates and, in turn, improves the predicted state estimates over the 
future horizon.  These disturbance and state estimates can be propagated into the future 
predictions and hence, proper inputs that are to be implemented to reject the external 
disturbances can be found. Fig. 1 shows the implementation of MPC/SE for insulin 
infusion control. 
 



  

 
 
 
 

Since IDDM management involves several general issues that are common to a 
variety of intelligent monitoring tasks, it is believed that the methodology here proposed 
could be applicable to other monitoring problems. 

 

3.  METHODOLOGY ADOPTED 
 

As discussed earlier, when the MPC is implemented with linear deterministic 
process model, under constant unmeasured disturbances entering the process, there will 
be an offset in the setpoint tracking.  If the characteristics of the disturbances that are 
expected to enter the system are known apriori, a new model can be formed to obtain 
better output and disturbance predictions.  
 
The disturbances can be any one of the following types: 

• Output disturbances which are entering the process at the output and are additive 
in nature; these can be modeled as the augmented output states. 

 
• Input disturbances which enter the process at input and bear some functionality on 

them before they show up in the controlled variable; these can be modeled as 
ramping output disturbances (Morari and Lee, 1991) or an augmented input or 
disturbance state (Davison and Smith, 1971). 

 
• Combined state and output disturbances; these can be modeled as a combination 

of both output and input disturbances 
 

• Purely integrating disturbances; this can be partially attributed to a constant 
output disturbance and partially to a constant integrating state disturbance. 
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Estimation 

Set 
points 

Insulin 
Infusion 
rate

Blood 
Glucose

  current States &     
  Disturbances 

Patient

Figure 1: Pictorial representation of MPC/SE strategy for Insulin Infusion control 



  

Table 1 shows the augmented state space models for different kind of disturbances. 
The augmented process model for disturbance rejection should be both observable and 
controllable to be fit for usage in control synthesis. Necessary and sufficient conditions 
for the augmented system to be observable and controllable are presented in Muske and 
Badgwell (2002). 
 
 

 
 

At every sampling instant the process states and disturbance states are estimated 
using a recursive form of Kalman filter.  The state estimator for augmented states is given 
by 
 
 
 
 
These equations refer to state prediction and state correction steps.  K is the Kalman gain 
which is updated in recursive fashion. 
 

Proper disturbance modeling coupled with optimal MPC tuning ensures perfect 
disturbance rejection and an offset-free response.  In MPC implementation, at each 
sampling instant, the controller input is taken as the first element of an open-loop 
optimal input sequence that is computed by driving the model predicted outputs as 
closely as possible to a desired future trajectory.  At each sampling time, the system 
states are estimated and a new open-loop optimization is carried out.   
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Table 1:  Augmented disturbance Models ( Muske and Badgwell, 2002) 
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The process model in discrete state space form is given by, 
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where, x ∈ Rr, u ∈ Rm and y ∈ Rn represent State, Manipulated and Controlled variable 
vectors, respectively.  State-space representation of MPC is given by Lee et al. (1994).   
 

As in a typical MPC formulation, at each sampling instant, an open loop state 
observer is used for predicting future behavior of the plant over a finite future time 
horizon of length p (prediction horizon) starting from current time instant k.  We are free 
to choose only q (control horizon) future manipulated input moves.  A standard estimator 
for state space form models is given by, 
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Uf(k) is future input vector, Ŷ(k) is future output predictions.  The dux SandSS ,  matrices 
are given by, 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Φ

Φ
Φ

=

p

x

C

C
C

S

~~
...

~~
~~

2
  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

I

I
I

S d ...
  and   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Γ++ΦΓΦΓΦ

Γ+ΦΓΦΓΦ
ΓΓΦΓΦ

ΓΓΦ
Γ

=

−−−

−

−−

~)...~(~......~~~~~~
...............

~)~(~......~~~~~~
~~......~~~~~~

0............
0...0~~~~~
0...00~~

21

1

21

ICCC

ICCC
CCC

CC
C

S

qppp

qq

qq
u

 

A future set-point trajectory  
[ ]TT

r
T

r
T

r kpkykkykkykR )/(...)/2()/1()( +++=  
 
is generated at instant k as follows   

)/1()/1(
)()/()/1(

kjkxCkjky
krkkkxkjkx

rrr

rrrr

++=++
Γ++Φ=++

 

          for j = 0,1,….p-1 
 

The MPC problem at the sampling instant k is formulated as a constrained optimization 
problem as follows )()()()(min
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where, the prediction error E(k) at instant k is given as,  )()()( kYkRkE −= .  WE and WU 
represent error weighting and input move weighting matrices, respectively, and are 
defined as 
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The above formulation can be transformed into QP as follows: 
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The controller is implemented in a moving horizon framework.  Thus, after 

solving the optimization problem, only the first move uopt(k|k) is implemented on the 
patient, and optimization problem is reformulated at the next sampling instant based on 
the updated information from the patient.  The algorithm is given in Figure 2. 
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3.  RESULTS AND DISCUSSIONS 
 

The objective of this work is to design a robust model based control for effective 
disturbance rejection under plant model mismatch. Three kinds of patient models whose 
response is distinct from each other are considered for performing simulation studies.   
The steady-state information for three patients is given in Table 2. 
 
 

Patient Steady-state Insulin 
Infusion rate 
(mU/min) 

Steady-state Blood 
Glucose concentration 
(mg/dl) 

1 22.3 81.141 

2 15.205 81.0635 

3 22.88 81.1 
 

The simulation studies are carried out using Simulink® model and Matlab® 
routines.  A meal disturbance was introduced at 1000 min into the patient simulations.  
The responses of three patients for the similar meal disturbance in open loop (without 
control action) are plotted in Fig.3.  It was observed that, the blood glucose levels 
increased up to 140 to 170 mg/dl.  Even though these levels reduced to normal 
eventually, the time period for which they are above the normoglycemia threshold was 
significant.  This has to be considered seriously, as the prolonged hypo- or hyperglycemic 
excursion deteriorates the metabolism rates.  
 

uopt(k|k) 

y(k) 

r(k) 

Figure 2:  Block diagram of MPC/SE algorithm 

Table 2:  Steady state behavior of three test patient simulations 



  

 
 
 
3.1 Mathematical Modeling: 
 

Patient-1 was used for perturbation studies and subsequent model generation.  The 
choice of sampling time was made keeping view of system dynamics and constraints on 
the sensor sampling rates.  As the approximate settling time was 85 min to capture the 
faster dynamics the sample time must be less than 17 min (20%). Lower bound on the 
sampling time was derived from the ability of BGL sensor.  Researchers in the sensor 
field have reported the ability to sample glucose every 1 min utilizing a commercially 
available electrochemical biosensor (Wilson and Gifford, 2005).  Latest literature 
discusses the work on some sensors which are reported to measure the blood glucose 
concentrations at a rate 15 sec, which are yet to be commercialized. In this work a 
sampling time of 1 min was chosen. 
 

A pseudo random binary sequence (PRBS) input signal in insulin infusion rate is 
introduced at time t=1000min to t=2000min.  The PRBS signal was generated using 
idinput routine in matlab.  The switching time was chosen to be equal to 10 sampling 
instants, which was appropriate to study the fast rate dynamics of the patient.  The 
obtained input (insulin infusion rate) and output (blood glucose concentration) data is 
plotted in Fig.4.    
 
 

A third order state-space model was built using the ident toolbox in Matlab® 
using prediction error method.  A prediction accuracy of 89.01% was obtained using this 

Figure 3: Open loop response of three patients for similar meal disturbance 



  

model.  The step response and impulse responses for model simulations were in good 
agreement with the actual patient-1 simulations.  
 

 
 
 

The developed 3rd order state-space model is given by, 
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The disturbance was assumed to enter as both additive and state/input form.  As 

evident from the open-loop disturbance responses plotted in Fig.3, an integrating 
disturbance produced a prolonged deviation in the output from the steady state.  As 
discussed earlier, it was assumed that prediction error can be attributed partially to a 
constant output disturbance and partially to a constant integrating state disturbance.  The 
corresponding augmented model used in control synthesis is given by 
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Figure 4:  Input - output data generated using perturbations studies on patient-1 for model building 



  

where,  p IΓ = , Γ×=Γ βd  and β is chosen to be 2.5x103, which is a tuning parameter.  
Here one (= number of outputs) state is augmented so as to ensure the observability and 
controllability of the augmented model.  The augmented model is given by, 
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Observability matrix for this augmented system was found to be a full rank matrix 

and hence the augmented system was observable.   The controllability matrix was of rank 
3.  The difference in rank of controllability matrix and the rank of Φ  gave the number of 
uncontrolled states.  As the rank of Φ was 4, the number of uncontrolled states was 1, 
which is evidently the disturbance entering into the process.  And other states which 
directly influence the output were controllable; hence, the process was controllable. 
 
3.2 Control Implementation: 
 
Three controllers are studied for their performance for disturbance rejection. 

• Linear Model Predictive Controller (using actual process model and without 
output constraints) 

• State Estimation based MPC with augmented process model (without output 
constraints) 

• State Estimation based MPC with augmented process model with output 
constraints 

 
For all these controllers the common control parameters used are given by, 

Weight on error in MPC objective function, we = 2 
Weight on input-rate in MPC objective function, wu  = 0.6 
Prediction horizon,  p = 400 
Control horizon,  q = 1 
Bounds on Input (Insulin Infusion rate) = [ 0  and 250 ] mU/min  
Input-Rate bounds = [ -10 and 10 ] mU/min 

For State Estimation based MPC, the Kalman filter parameters are given by, 
 Output covariance,  R  =   0.1 
     State covariance matrix, Q  = 0.4 I4x4  
For the third controller the Output (Blood glucose concentration) bounds are given as    [ 
Ys-6   and Ys +8 ] mg/dl, where Ys is the steady-state Blood glucose concentration when 
there is no disturbance. 
 

The performance of the Linear Model Predictive Controller without output 
constraints using actual process model ws plotted in the Fig.5.   These controller 
parameters were first tuned for patient-1 and then detuned to get optimal performance in 

(19)



  

all the three patients.  The control parameters were reported earlier.  It was observed that 
LMPC’s performance for disturbance rejection was unacceptable.  In all cases, both 
positive and negative offsets in the Blood glucose concentrations were higher than the 
allowable range ( 70-100 mg/dl).  This controller was to be rejected. 
 

To account for the disturbance that entered the process and effectively rejecting it 
by taking appropriate action, a proper disturbance model and an observer were essential.  
A State Estimation based MPC (MPC/SE) was implemented to serve this purpose.  The 
response with MPC/SE in three patients is plotted in the Fig.6.  It was observed that the 
controller showed tremendous improvement in disturbance rejection in the case of 
patient-1 and patient-2.  But, patient-3 displayed hypo- and hyperglycemic excursion of 
blood glucose. 

 
Later, to increase the sensitivity of MPC/SE algorithm output constraints were 

introduced in optimization problem of MPC.  This resulted in an aggressive insulin 
addition, when the open loop observer predicted the blood glucose concentrations outside 
the given output limits.  These constraints were carefully chosen, in such a way that they 
did not affect the feasibility of the optimum solution in normal condition.  Hence, they 
were not designed to be stringent. The response of MPC/SE with output constraints was 
found to be satisfactory for all the patients and shown in Fig.7.  This was achieved with a 
maximum insulin infusion rate of 245 mU/min.  It was reported that the maximum insulin 
excretion rate in a healthy human being is 100 mU/min, and it is impossible to remove 
insulin once it has been delivered to the patient.  This problem can be solved by using 
multi-point injection and following homogenization strategies (Ellison et al., 2002) which 
reduces the risk of exposure of higher amounts of insulin as a pulse. 

 
 
 

Figure 5: Disturbance rejection with Linear Model Predictive Control for three patients for a similar kind 
of meal disturbance 



  

 
 
 

 

 
 
 

Figure 6: Disturbance rejection with State Estimation based Linear Model Predictive Control 
using augmented state space model (without output constraints) for three patients for a similar 
kind of meal disturbance 

Figure 7: Disturbance rejection with State Estimation based Constrained Linear Model Predictive 
Control with augmented state space model for three patients for a similar kind of meal disturbance 



  

 
Finally, the performances of the three controllers are tabulated in Table 3. As 

these controllers were tuned in an iterative fashion these parameters may not be optimal.  
But, it is evident from the table that constrained MPC/SE with proper disturbance 
modeling efficiently rejects the disturbance. 

 
 

 
 
 
5. CONCLUSIONS AND FUTURE WORK 
 
Model-based predictive control of insulin infusion system requires a compensation 
mechanism for mismatch in patient behavior and model predictions given external 
disturbances such as meal or exercise. Disturbance modeling by additional augmented 
disturbance states as integrating process will essentially serve this purpose. A MPC/SE 
algorithm with augmented state space model was used for insulin infusion control.  
Physical and physiological constraints were incorporated in the control design.  It was 
observed that, even under huge process-model mismatch with an integrating type of 
disturbance (meal disturbance) entering the system, constrained MPC/SE with augmented 
state space model gave promising control ensuring perfect normoglycemia.  In addition to 
efficient disturbance rejection, the digital nature of this control algorithm enables 
potential implementation onto to a microprocessor chip, which makes it possible to 
design portable insulin infusion systems mounted on the patient.   
 
Future work is directed towards zone control of the blood glucose concentration to 
further reduce the control effort.  In MPC objective function instead of having a single 
setpoint, a zone is to be defined and the setpoint is also made as an optimization variable 
(along with input moves) which is to be constrained in the zone.  This modification is 
expected to give drastic reduction in insulin consumption, but still giving the desired 
performance. 
 
 
 

Table 3:  Comparison of performance of different control algorithms for insulin infusion control  
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