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ABSTRACT 
 
Signal filters improve controller performance by reducing the impact of noise or random error in 
the measured process variable.  These filters may be placed upon either the measured process 
variable or the controller output.  Directly or indirectly, signal filters limit the large controller 
output moves caused by derivative action upon noisy measurements.  Even if the noise appears 
not to cause performance problems, the filter reduces fluctuations in the controller output that 
wear the final control element.  This paper uses mathematical analysis of closed-loop transfer 
functions combined with simulation studies of non-self regulating processes to demonstrate 
practical strategies for using available industrial controllers with controller output signal filters 
either internal or external to the controller. 
 
Many industrial controllers include a signal filter as the fourth mode of a proportional-integral-
derivative (PID) with Filter controller.  These exist in a variety of forms depending upon the 
placement of the derivative and signal filter terms.  In the Ideal and Interacting forms, the 
controller consists of a single ordinary differential equation (ODE) including all four terms.  In 
the Parallel form, the controller consists of a system of two ODEs with the proportional and 
integral terms comprising one ODE and the derivative and signal filter terms comprising a 
second ODE.  The output of the Parallel controller form equals the sum of the outputs of the two 
ODEs.  The Parallel form filters controller output changes resulting only from derivative action 
while the Ideal and Interacting forms filter changes resulting from proportional, integral, and 
derivative action combined. 
 
Novel contributions of this work are derived Internal Model Control (IMC) tuning correlations 
for the Parallel form of the PID with Filter controller for non self-regulating systems.  These 
derived correlations are necessary to accurately and dependably tune commonly-used Parallel 
form industrial controllers manufactured by ABB, Bailey, Emerson, and Honeywell, among 
others, for use in non-self regulating processes.  These new correlations allow Parallel form 
controller users to employ IMC tuning methods similar to those already available for the Ideal 
and Interacting forms. 
 
This paper demonstrates the use of signal filters both internal and external to the controller 
through mathematical analysis of closed-loop transfer functions supported by simulation results 
for non-self regulating processes.  If a four mode PID with Filter controller is not available in an 
industrial process, the paper demonstrates how a three mode PID controller combines with a 
signal filter external to the controller to essentially create a four mode PID with Filter controller.  



The tuning and performance of each of the PID with Filter controller forms is detailed using 
simulation studies on non self-regulating processes. 
 
INTRODUCTION 
 
Self-regulating processes seek a natural steady state operating level in the open loop if the 
manipulated and disturbance variables remain constant for a sufficient period of time.  
Conversely, non-self regulating (or integrating) processes do not seek such a natural steady state.  
These processes move in an unbounded manner when perturbed in the open loop by a 
manipulated or disturbance variable.  A pumped tank is a well-known example of such a non-self 
regulating process. 
 
For non-self regulating processes, Rice and Cooper [1] introduced IMC tuning correlations for 
the Ideal and Interacting forms of the PID with Filter controller shown in Eq. 1 and 2, 
respectively.  This paper extends the IMC tuning correlations to the Parallel form shown in Eq. 3 
for non-self regulating processes.  Furthermore, this paper demonstrates how an Ideal PID with 
Filter controller may be formed using an Ideal PID controller (without filter) combined with an 
external filter. 
 
Generalized PID with Filter Controller Forms 
 
The proportional-integral-derivative (PID) controller continues to be widely-used in industry 
because it effectively controls a wide variety of processes while remaining easy to understand 
and tune.  Often, industrial PID controllers include a signal filter as a fourth mode, as indicated 
by the derivative filter parameter,α , in Eq. 1-3.  Differences in the placement of the derivative 
and filter terms lead to these three PID with Filter controller forms [1-6], shown in both the 
Laplace and time domains:  
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Note that the Ideal and Parallel forms shown in Eq. 1 and 3, respectively, are equivalent without 
the filter term (α = 0).  Note also that the Ideal form can be converted to the Interacting form 
shown in Eq. 2.  Therefore, the Ideal and Interacting forms are simply different expressions of 
the same controller equation.  In contrast, the Parallel form is a fundamentally different 
controller equation because of the placement of the filter.  Observe this difference in the system 
of two ordinary differential equations (ODEs) in Eq. 3b versus the single ODE for the Ideal and 
Parallel forms in Eq. 1b and 2b. 
 
There are many examples [2] of industrial Parallel form PID with Filter controllers including: 
ABB Masterpiece 200/1; Bailey Function Code 156 Non-Interacting PID; Emerson Delta V 
Parallel PID; Honeywell Experion PKS Equations A, B, and C; Honeywell TDC 3000 Non-
Interactive Equations A, B, and C; and Siemens PCS7 CTRL_PID.  Therefore, there is clearly a 
need for extending IMC tuning to the Parallel form.   
 
IMC TUNING 
 
The Internal Model Control (IMC) method is popular for tuning PID controllers [7-9].  Observe 
how the IMC block diagram in Fig. 1 may be converted into a conventional feedback control 
structure when the internal models represented by GM(s) are removed. 
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Figure 1.  IMC Block Diagram 

 



Using the structure shown in Fig. 1 and the procedure outlined in Chien and Fruehauf [9], the 
following tuning rules are derived for the three forms of the PID with Filter controller.  For non-
self regulating processes, these rules use a First Order plus Dead Time (FOPDT) Integrator 
model for GM(s), expressed in terms of the integrator gain, KP

*, and the dead time, θP, in Eq. 4. 
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The following IMC tuning correlations for the Parallel form of the PID with Filter controller for 
non-self regulating processes are a novel contribution of this work.  These tuning correlations are 
presented alongside those for the Ideal and Interacting forms [1]. 
 
IMC Tuning for PID with Filter Controllers for Non-Self Regulating Processes 
 
The first step in tuning a PID with Filter controller for a non-self regulating process is to collect 
dynamic data from your process as near as practical to the design level of operation.  For non-
self regulating processes, this data is often collected in closed loop to maintain stability.  The 
second step is to fit a FOPDT Integrator model, as shown in Eq. 4, to the data collected. 
 
Once the FOPDT Integrator model parameters have been determined, the third step is to specify 
the closed loop time constant, τCL.  Use this parameter to adjust controller performance.  Increase 
τCL to produce a slower, more conservative response with a longer settling time.  Conversely, 
decrease τCL to produce a faster and more aggressive response with a shorter settling time.  The 
choice of is dependent upon an understanding of the nature of the process and an evaluation of 
the objectives and constraints for closed loop performance.  τCL may be computed in terms of θP 
using Eq. 5 [10]. 
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To apply these tuning correlations, it is important to determine the form of your PID with Filter 
controller. The next step in calculating IMC tuning parameters is the calculation of KF, the filter 
gain, based on θP and τCL using Eq. 6.  KF remains equal for all three forms. 
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The reset time, τI, has a different tuning equation for each of the three forms.  All three equations 
are expressed in terms of θP and τCL.  The Parallel form in Eq. 7c differs from the Ideal form in 
Eq. 7a only in the subtraction of KF in the Parallel form. 
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Equation 8 expresses the controller gain, KC, in terms of KP

*, θP, τCL, and τI for all three forms. 
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The derivative time, τD, has two different tuning equations in terms of θP, τCL, and τI. The Ideal 
and Interacting forms use Eq. 9a while the Parallel form uses Eq. 9b. The equations differ only 
by the subtraction of KF in the Parallel form. 
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Equation 10 expresses the filter coefficient, α, in terms of KF and τD for all three forms.  Because 
KF is equal for all three forms, the product of α and τD remains equal for all three forms. 
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Equations 6 through 10 demonstrate the similarities and differences between the tuning 
correlations for the Ideal, Interacting, and Parallel forms of the PID with Filter controller 
algorithm. 
 
While these tunings are derived assuming derivative on error, these tunings are applicable to 
derivative on measurement forms of the PID with Filter controller.  The derivative of the set 
point signal is the only difference between these two forms.  If the set point signal remains 
steady, the derivative of the set point signal remains zero and there is no difference between the 
forms.  To avoid the derivative kick caused by the derivative when the set point changes, the 
examples presented in this paper use derivative on measurement. 
 
Differences between Parallel and Ideal Tunings for Non-Self Regulating Processes 
 
It is important to understand the difference between the tuning correlations for the Parallel and 
Ideal forms of the PID with Filter controller because the two are equivalent when the filter term 
is removed. 
 
To facilitate this comparison, scale the closed loop time constant, τCL, by the dead time, θP, to 
produce the dimensionless ratio, k, as shown in Eq. 11.  Increase k for a more conservative 
response and decrease k for a more aggressive response. 
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The first step in comparing the forms is to convert Eq. 6 to Eq. 12 by expressing the filter gain, 
KF, scaled by θP as a function of k.  Note that f(k) approaches 0 as k approaches 0.  Because the 
numerator and denominator are polynomials of the same order, f(k) approaches 1 as k 
approaches infinity. 
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Express the reset times, τI,Ideal and τI,Parallel, as functions of k based upon Eq. 7a and 7c, 
respectively.  Using these functions, compute Eq. 13, the ratio of τI,Parallel to τI,Ideal.  As k 
approaches 0, the ratio approaches 1.  As k approaches infinity, the ratio also approaches 1.  
Based on Eq. 8, the ratio of KC,Parallel to KC,Ideal equals the ratio of τI,Parallel to τI,Ideal. 
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To evaluate the difference between τI,Parallel and τI,Ideal, observe the plot of Eq. 13 versus k shown 
in Fig. 2.  Notice that the ratio of τI,Parallel to τI,Ideal approaches 1 as k approaches 0.  As k increases 
from 0, the ratio drops sharply to a minimum of about 0.955 at a k value around 1.6.  As k 
increases from 1.6, the ratio grows gradually to approach 1 as k approaches infinity.  The ratio 
never exceeds 1.  At the minimum ratio, the difference between τI,Parallel and τI,Ideal reaches its 
maximum value but τI,Parallel is only 4.5% less than τI,Ideal. 
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Figure 2.  Difference Between τI,Parallel and τI,Ideal 
 



Express the derivative times, τD,Ideal and τD,Parallel, as functions of k based upon Eq. 9a and 9b, 
respectively.  Using these functions, compute Eq. 14, the ratio of τD,Parallel to τD,Ideal.  Note that the 
first of two terms is the reciprocal of the ratio of τI,Parallel to τI,Ideal.  From Fig. 2, observe that the 
ratio remains very close to 1 as does its reciprocal.  Therefore, the first term remains 
approximately equal to 1 for all k.  As k approaches 0, the second term approaches 0 and the 
ratio approaches 1.  As k approaches infinity, the second term approaches 1 and the ratio 
approaches 0.  Based on Eq. 10, the ratio of αParallel to αIdeal equals the reciprocal of the ratio of 
τD,Parallel to τD,Ideal.     
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To understand the difference between τD,Parallel to τD,Ideal, observe the plot of Eq. 14 versus k 
shown in Fig. 3.  As k approaches 0, the ratio approaches 1 as expected.  As k approaches 
infinity, the ratio approaches 0 as expected.  The closed loop time constant, τCL, as expressed in 
Eq. 5, results in k of about 3.16.  At this recommended value, τD,Parallel equals only 40% of the 
τD,Ideal value. 
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Figure 3.  Difference Between τD,Parallel and τD,Ideal 
 
Figures 2 and 3, along with Eq. 12-14 demonstrate the similarities and differences between the 
Parallel and Ideal forms of the PID with Filter controller.  The tuning correlations produce 
similar values for KC and τI.  As the choice for the closed loop time constant, τCL, increases for a 
more conservative controller, the difference between the τD and α values computed for the 
Parallel and Ideal forms increases. 



USING IMC TUNINGS WITH EXTERNAL FILTERS 
 
In industry, many controllers take the form of one of PID with Filter controller forms shown in 
Eq. 1-3.  However, there are industrial PID controllers that do not include a filter term.  With 
noisy measurements very likely in an industrial environment, this makes derivative action 
difficult without a filter. Without the filter, the derivative action reacts to the noisy signal and 
may produce great amounts of controller output movement depending upon the amount of noise 
present and the controller tuning.  A PID controller may be combined with an external filter on 
either the controller output or the measured process variable to replicate a PID with Filter 
controller. 
 
Figures 4 and 5 display the Ideal and Parallel PID with Filter controllers from Eq. 1 and 3 in 
closed loop block diagrams with a process modeled by GP(s) and a disturbance modeled by 
GD(s).  In each, the controller is split into three parts: a proportional-integral block, GC,PI(s), a 
derivative block, GC,D(s), and a filter block, GC,F(s).  These blocks are specified for both 
controllers, according to Eq. 15-17.  Notice that the only difference between the two controllers 
is the placement of GC,F(s). 
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Figure 4.  Closed Loop Process with Ideal PID with Filter Controller 
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Figure 5.  Closed Loop Process with Parallel PID with Filter Controller 

 
The closed loop block diagrams shown for the Ideal and Parallel forms in Fig. 4 and 5 may also 
be described using the transfer functions in Eq. 15 and 16, respectively. 
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The Ideal form of the PID with Filter controller shown in Fig. 4 and Eq. 15 may be replicated by 
adding an external filter, GF(s), on either the controller output, U(s), or the measured process 
variable, Y(s), to the process alongside a PID controller.  The addition of a filter on the controller 
output is straightforward as shown by the block diagram in Fig. 6 and the transfer functions in 
Eq. 17. 
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Figure 6.  Closed Loop Process with PID Controller and External Filter on U(s) 
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By equating Eq. 15 and 17, it is clear that the filter, GF(s), may be specified as first order filter 
matching the GC,F(s) for the Ideal PID with Filter controller as shown in Eq. 18. 
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Similarly, an Ideal PID with Filter controller may be replicated using an external filter on the 
measured process variable, Y(s) as shown by Fig. 7 and Eq. 19. 
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Figure 7.  Closed Loop Process with PID Controller and External Filter on Y(s) 
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Note that the only difference between placing the external filter on U(s) and Y(s) is the GF(s) that 
appears in the numerator of the Y(s)/YSP(s) transfer function in Eq. 17 but not Eq. 19.  This 
results in filtering of the set point signal in Eq. 17 but not in Eq. 19.  Assuming that the set point 
remains steady, this filtering has little impact upon controller performance.  By equating the 
denominators in Eq. 15 and 19, it is clear that the external filter on Y(s) may also be specified as 
a first order filter matching the GC,F(s) for the Ideal PID with Filter controller as shown in Eq. 20. 
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NON SELF-REGULATING EXAMPLE PROCESS 1 – PUMPED TANK 
 
The first example simulates a 10 m pumped tank using the linear model shown as Eq. 21 with 
user-specified limits for the measurement and physical process limits. 
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As depicted in Fig. 8 below, liquid continually feeds into the tank at a constant rate while a pump 
empties the tank at a variable rate.  The level in the tank only remains steady if the discharge 
flow rate through the pump equals the feed rate.  If the discharge flow rate exceeds the feed rate, 



the imbalance causes the tank to drain until empty.  Similarly, the tank fills until overfilled if the 
feed rate exceeds the discharge flow rate.  Therefore, this is an excellent example of a non self-
regulating, or integrating, process. 
 

 
 

Figure 8.  Pumped Tank Example 
 

This example process uses IMC tuning parameters based upon the closed loop time constant, τCL, 
calculated using Eq. 5.  Table 1 lists the tuning parameters used for the Ideal, Interacting, and 
Parallel forms of the PID with Filter controller along with the parameters for the Ideal form of 
the PID controller (without filter). 
 

Table 1.  IMC Tunings PID and PID with Filter Controllers on Pumped Tank 

  Controller 
Gain, 

KC 

Reset  
Time, 
τI 

Derivative 
Time, 
τD 

Filter 
Coefficient, 

α 
  (%CO/m) (min) (min)  

Ideal PID w/ Filter -19.3 8.6 0.51 0.64 
Interacting PID w/ Filter -18.1 8.0 0.55 0.59 
Parallel PID w/ Filter -18.5 8.3 0.21 1.57 
Ideal PID -22.6 8.1 0.51  
 
As discussed previously, the derivative time, τD, is significantly smaller for the Parallel form 
than it is for the Ideal form.  Conversely, the filter coefficient, α, is significantly larger for the 
Parallel form than it is for the Ideal form. 
 
Figure 9 demonstrates the performance using the three PID with Filter controllers and tunings 
listed in Table 1 in response to a set point step from 4.0 m to 4.5 m.  A normally distributed noise 
of 0.12 m span (6σ) is applied to the level measurement to demonstrate the ability of the PID 
with Filter controllers to handle noise. 
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Figure 9.  PID with Filter Controllers using Table 1 Tuning Parameters 
 
In Fig. 9, notice that the Ideal (a), Interacting (b), and Parallel (c) forms of the PID with Filter 
controller perform similarly.  The slight differences observed are expected due to the random 
noise present.  This similarity is due to the use of the same closed loop time constant, τCL, in the 
IMC tuning correlations for each controller form.  The filter does not eliminate the appearance of 
chatter in the controller output signal due to the noise in the level measurement.  However, it 
clearly reduces the controller output movement as compared to the PID controller (without filter) 
shown in Figure 10 while achieving a similar response in the level measurement. 
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Figure 10.  PID (without Filter)  
Performance with Noise 

Figure 11.  PID Controller with External Filter 
on Controller Output, u(t), Signal 

 
A comparison of Fig. 9 and 10 clearly demonstrates that a four-mode PID with Filter controller 
produces considerably less chatter or movement in the controller output variable than a three-
mode PID controller without filter.  However, some industrial PID controllers, including the 
Bailey Function Code 19 [2], are three-mode and do not include a filter term. 
 
Figures 11 and 12 demonstrate the transformation of such three-mode PID controllers into 
effective four-mode PID with Filter controllers with the addition of external filters on the 
controller output signal and the process variable measure signal, respectively.  In both strategies, 
the Ideal PID controller uses Ideal PID with Filter controller tunings for KC, τI, and τD from 
Table 1.  According to Eq. 18 and 20, both strategies also specify the external filter as a first 
order filter with a filter time constant equal to the product ατD using the Ideal PID with Filter 
controller tunings in Table 1.  
 
Note how the performance with the external filter on controller output in Fig. 11 matches the 
performance of the Ideal PID with Filter controller in Fig. 9a as expected. 
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Figure 12.  PID Controller with External Filter on Process Variable, y(t), Measurement Signal 
 
In Fig. 12, notice how the performance of the external filter on the process variable measurement 
signal improves as the number of times the measurement signal is observed and filtered increases 
per controller sample time.  In Fig. 12a, the filter observes changes in the measurement signal 
only every sample time as the controller does, the performance matches the Ideal PID with Filter 
performance shown in Fig. 9a.  In Fig. 12b, the filter observes 10 changes in the measurement 
signal for every change the controller observes and the filtering improves with less movement in 
the controller output signal.  In Fig. 12c, the filter observes 100 changes in the measurement 
signal for every change the controller observes and the filtering further improves with even less 
movement in the controller output signal. 
 
NON SELF-REGULATING EXAMPLE PROCESS 2 
 
These IMC tuning correlations for PID with Filter controllers are applied to the non-self 
regulating process listed in Eq. 22.  This process is widely published for use in comparing PID 
controller tunings [1, 11-14].  Rice and Cooper [1] compared the IMC tunings for the Ideal and 
Interacting forms of the PID with Filter controller with following published tunings for this 
process: Luyben [13]; Wang and Cluett [15]; and Ziegler-Nichols [13].  This paper builds upon 
previous work [1] by demonstrating the performance using IMC tunings for the Parallel form of 
the PID with Filter controller. 
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In accordance with the rule shown in Eq. 5, the closed loop time constant, τCL, is specified to be 
19 min.  The tuning parameters found in Table 2 are based upon this τCL value using the IMC 
tuning correlations for the three PID with Filter forms as detailed in Eq. 6-10. 
 

Table 2.  IMC Tunings PID with Filter Controllers in Example 2 

  Controller 
Gain, 

KC 

Reset  
Time, 
τI 

Derivative 
Time, 
τD 

Filter 
Coefficient, 

α 
  (%CO/%PV) (min) (min)  

Ideal PID w/ Filter 1.53 47 2.8 0.64 
Interacting PID w/ Filter 1.43 44 3.0 0.59 
Parallel PID w/ Filter 1.47 45 1.14 1.57 
 
Notice how the controller gains and reset times are relatively similar for the three forms.  The 
derivative time, τD, is significantly smaller for the Parallel form while the filter parameter, α, is 
significantly larger.  These observations are consistent with those observed in Example 1 and 
predicted in Eq. 11-14 and Fig. 2-3.  Using the tuning parameters in Table 2, Fig. 13 
demonstrates the performance for each of the PID with Filter Controllers in response to set point 
step from 50 to 51 with a 0.12 span (6σ) normally distributed measurement noise. 
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Figure 13.  PID with Filter Controllers using Table 2 Tuning Parameters 
 
In Fig. 13, notice how the Ideal (a), Interacting (b), and Parallel (c) perform similarly as they did 
in Fig. 9 for Example 1.  The slight differences observed are expected due to the random noise 
added. 
 



CONCLUSIONS 
 
As demonstrated by Examples 1 and 2, signal filters improve controller performance by reducing 
the impact of noise in the measured process variable.  Such filtering may be accomplished using 
an available industrial four-mode PID with Filter controller.  If such a four-mode controller is 
unavailable, a three-mode PID controller may be combined with an external filter on either the 
controller output signal or the process variable measurement signal to form an effective four-
mode PID with Filter controller.  Therefore, the tuning correlations for the PID with Filter 
controller may be used to specify both the tunings for the PID controller and the time constant 
for the external first order filter. 
 
This paper introduces IMC tuning correlations for the Parallel form of the PID with Filter 
controller for use with non-self regulating processes.  The Parallel form of the PID with Filter 
controller consists of a system of two ODEs while the Ideal and Parallel forms consist of a single 
ODE.  Therefore, the Parallel form is fundamentally different from the Ideal and Interacting 
forms.  While IMC tuning correlations for the Ideal and Interacting forms exist [1], it is 
necessary to derive IMC tuning correlations for the Parallel form because it is fundamentally 
different. 
 
The IMC tuning correlations for the Parallel form of the PID with Filter controller for use with 
non-self regulating processes show both similarities and differences with the IMC tuning 
correlations for the Ideal and Interacting forms.  The controller gain, KC, and reset time, τI, 
values calculated for the Parallel form differ little from those for the Ideal form.  The derivative 
time, τD, and filter parameter, α, values calculated for the Parallel form differ increasingly from 
those for the Ideal form as the closed loop time constant, τCL, increases and the controller tuning 
becomes more conservative.  These tuning correlations for the Parallel form are important 
because they confirm both similarities and differences with the fundamentally different Ideal 
form. 
 
Generally, the choice between the Ideal, Interacting, and Parallel forms of the PID with Filter 
controller is dictated by the form of the industrial controller available.  If there is an opportunity 
to select the form of the controller, the Parallel form has some benefit in that it filters only the 
contribution of the derivative term while leaving the proportional term that drives the controller 
action unfiltered. 
 
NOMENCLATURE 
 
u(t), U(s) Controller Output (in time and Laplace domains, respectively) 
y(t), Y(s) Measured Process Variable 
ySP(t), YSP(s) Set Point 
e(t), E(s) Error [e(t) = ySP(t) – y(t), E(s) = YSP(s) – Y(s)] 
KC Controller Gain [u/y] 
τI Reset Time [time] 
τD Derivative Time [time] 
α Filter Parameter 
τCL Closed Loop Time Constant [time] 



KP
* Integrator Gain [y/(u·time)] 

θP Dead Time [time] 
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