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Abstract

The design of constrained, “plant-friendly” multisine input signals that optimize a geometric dis-
crepancy criterion arising from Weyl’s Theorem is examined in this paper. Such signals are meaningful
for data-centric estimation methods, where uniform coverage of the output state-space is critical. The
usefulness of this problem formulation is demonstrated by applying it to a linear example and to the
nonlinear, highly interactive distillation column model developed by Weischedel and McAvoy (1980).
The optimization problem includes a search for both the Fourier coefficients and phases in the multisine
signal, resulting in an uniformly distributed output signal displaying a desirable balance between high
and low gain directions. The solution involves very little user intervention (which enhances its prac-
tical usefulness) and has significant benefits compared to multisine signals that minimize crest factor.
The effectiveness of data resulting from a Weyl criterion-based signal for Model-on-Demand Model
Predictive Control (a data-centric multivariable control algorithm) is demonstrated for the distillation
column case study.

1To whom all correspondence should be addressed. phone: (480) 965-9476 fax: (480) 965-0037; e-mail:
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1 Introduction

The need for “plant-friendliness” in system identification for the process industries stems from the fun-
damental need for informative experiments despite practical requirements to the contrary (Riveraet al.,
2003). A plant-friendly identification test will produce data leading to a suitable model within an accept-
able time period, while keeping the changes and variability in both input and output signals within user-
defined constraints. In recent years, there has been significant interest in data-centric dynamic modeling
frameworks such as Just-in-Time modeling (Cybenko, 1996) and Model-on-Demand (MoD) estimation
(Stenman, 1999). The appeal of these modeling approaches is that they enable nonlinear estimation, while
reducing the structural decisions made by the user and maintaining reliable numerical computations. The
performance of these methods, however, is highly dependent upon the availability of quality, informative
databases, and consequently, good experimental designs are an imperative. An important consideration
in experimental design for these estimation methods is to achieve uniform coverage of regressors in the
database. This paper examines the development of multisine input designs that meet this criterion while
satisfying plant-friendliness constraints during identification testing.

The idea of uniformly distributed experimental designs for system identification relying on multisine
signals has previously been examined by Duym and Schoukens (1995), who rely on minimizing an objec-
tive function quantifying the real and actual discrepancy from a user-defined grid. An iterative procedure
that does not apply constraint enforcement is used in this work. A more general approach that we present
in this paper is to rely on the principles of geometric discrepancy theory (Matoušek, 1999) as a means
for achieving uniformity of the data in a regressor space. This is accomplished by minimizing a discrep-
ancy function made up of trigonometric polynomials arising from Weyl’s Theorem that insure that the
points are equidistant on a state-space. The optimization problem calls for minimizing this discrepancy
function on the anticipated outputs of the system, subject to the restrictions of an orthogonal “zippered”
spectrum (used to enable multi-channel implementation) and simultaneously enforcing plant-friendliness
time-domain constraints on upper and lower limits, move sizes, and rates of change in either (or both) in-
put and output signals. The optimization problem is solved using a state-of-the-art NLP solver (KNITRO
3.1) which uses an interior point trust region method and employs SQP techniques to solve the barrier
subproblems.

The paper is organized as follows: Section 2 describes the Weyl criterion that defines the geometric
discrepancy objective, while Section 3 presents an example based on a simple linear highly interactive sys-
tem that leads to the plant-friendly constrained optimization problem formulation that is the basis for this
work. Section 4 describes the results of a more demanding case study (based on the nonlinear Weischedel-
McAvoy distillation column) while Section 5 contains a Summary and Conclusions.

2 Uniform Distribution of Infinite Sequences - The Weyl Criterion

Discrepancy theory deals with the distribution of points in space (Matoušek, 1999). The Weyl criterion
(Weyl, 1916) gives the necessary and sufficient conditions for a sequence to be uniformly distributed in
[0,1)d, thed-dimensional unit interval. The criterion for a two-dimensional sequence can be summarized
as follows:



Theorem.(H. Weyl, 1916) A sequence{y1(k),y2(k)} is equidistributed in[0,1)2 if and only if

lim
N→∞

1
N

N

∑
k=1

e2π i(l1y1(k)+l2y2(k)) = 0 (1)

∀ sets of integersl1, l2 not both zero.

Decomposing (1) into real and imaginary parts we obtain that the sequence{y1(k),y2(k)} is equidis-
tributed in[0,1)2 if and only if for all sets of integersl1, l2 (not both zero) the following conditions hold:

lim
N→∞

1
N

N

∑
k=1

cos[2π(l1y1(k)+ l2y2(k))] = 0 (2)

and

lim
N→∞

1
N

N

∑
k=1

sin[2π(l1y1(k)+ l2y2(k))] = 0 (3)

Weyl’s criterion can readily be extended to higher dimensions, as needed by the requirements of the
problem under consideration.

3 An Illustrative Example

To illustrate the effectiveness of the Weyl criterion for signal design, we consider a highly interactive
system based on the simplified model of a high-purity distillation column (Morari and Zafiriou, 1988).
The system dynamics are described in terms of the continuous time transfer function is as follows:

y(s) =
1

75s+1

[
87.8 −86.4
108.2 −109.6

]
u(s) (4)

wherey(s) andu(s) are Laplace transform of the output and input signals to the system, respectively.

Our goal is to design an input signal that is uniformly distributed and as such has good directionality
information in the output state space of the system; the latter goal is an important requirement when
working with highly interactive multivariable systems (Morari and Zafiriou, 1988). This assumesa priori
knowledge of the plant model as either an equation or a computer program that is available to the optimizer.
We introduce two cycles of input each of lengthNs and let the transients die out in the first cycle (k =
0, . . . ,Ns−1) of the output. As before the inputu(k) and outputy(k) are vectors with two components. To
design a plant friendly signal we impose bound constraints on bothu(k) and/ory(k) in the second cycle.
Here,z is one ofy1, y2, u1, u2.

|z(k)| ≤Cz, k = Ns, . . . ,2Ns−1 (5)

TheCz are user defined constants. We would also like to have restrictions on the move size ofu(k) andy(k),
which is the difference between successive values inu(k) andy(k). We therefore impose the constraints,

|z(k+1)−z(k)| ≤ ∆Cz, k = Ns−1, . . . ,2Ns−2 (6)



Again∆Cz are user defined constants. The prediction of the plant output response must be determined from
a model estimated from previous identification tests, or otherwise obtaineda priori. These relationships
are:

y1(k) = f1(u1,u2,y1,y2), k = 0, . . . ,2Ns−1 (7)

y2(k) = f2(u1,u2,y1,y2), k = 0, . . . ,2Ns−1 (8)

Here the arguments off1 and f2 indicate the dependence ofy1 andy2 on the values of the vectorsu1, u2, y1

andy2; for the Example problem these correspond to the sampled data representation for (4). The inputs
u1(k) andu2(k) are chosen per the multisine structure:

u j(k) =
(m+1)ns

∑
i=1

√
2αi j cos(

2π i
Ns

k+φi j ) (9)

with Fourier coefficient bounds corresponding to a modified zippered spectrum as described below:

αi j =


≥ 0, i = j, (m+1)+ j, · · · ,(m+1)(ns−1)+ j
≥ 0, i = m+1, 2(m+1), · · · ,ns(m+1)
= 0, for all otheri up to(m+1)ns

The goal is to uniformly distribute the points(y1(k),y2(k)) in the output state space region[−Cy1,Cy1)×
[−Cy2,Cy2). We wish to use the Weyl Criterion described in the previous section to achieve this uniform
distribution. Since the Weyl Criterion deals with uniform distributions in[0,1)2, we introduce a change of
variables:

ŷ1(k) =
y1(k)+Cy1

2Cy1

, ŷ2(k) =
y2(k)+Cy2

2Cy2

(10)

Since we only have a finite number of points in the sequences, we choose an integerL and form the setS
as follows:

S= {x : x∈ Z and|x| ≤ L} (11)

whereZ is the set of all integers andW corresponds to

W = {(l1, l2) : l1 ∈ S, l2 ∈ Sand(l1, l2) 6= (0,0)}

We then try to minimize the sum in equations (2) and (3) for all elements of the setW. As before we
impose this “Weyl” constraint on the second cycle (k= Ns+1, . . . ,2Ns−1) of the output. The optimization
is carried out to estimate the amplitudes and phasesαi1,αi2,φi1,φi2, i = 1, . . . ,(m+ 1)ns of the m = 2
multisine input channels. The complete problem statement is as follows:

min
αi1,αi2,φi1,φi2

t (12)

s.t.
2Ns−1

∑
k=Ns+1

cos[2π(l1ŷ1(k)+ l2ŷ2(k))]≤ t,∀ (l1, l2) ∈W

2Ns−1

∑
k=Ns+1

sin[2π(l1ŷ1(k)+ l2ŷ2(k))]≤ t,∀ (l1, l2) ∈W

t ≥ ε



as well as subject to constraints per Equations (5)-(10). The lower bound constraint ont is imposed to
promote faster convergence.ε is chosen to be some small positive constant.

To better understand the influence of design variablesL andε on the distribution of points in the output
state space we perform two experiments using the example problem per (4) with the bound and move sizes
shown in Table 1.

In the first experiment, we fixε at a value of 10−3 and varyL. The distribution of points in the output
state space obtained for two different simulations withL = 2 and 6 is shown in Figure 1; Pendse (2004)
contains simulations forL = 3, 4, and 5. It can be seen that by increasingL, the uniformity in the output
state space distribution improves dramatically. An increase in the design variableL seems to move the
various clusters of points at different places in the state space to achieve an approximation to a uniform
distribution.

In the second experiment, described in more detail in Pendse (2004), we fixL = 3 and varyε. We
know from Experiment 1 that a low value ofL gives a relatively poor distribution; the effect of changing
ε is then more easy to decipher on a relatively poor distribution than with a good distribution. A series of
simulations withε values ranging from 10−2to 10−6 can be found in Figure 2. Decreasing the value ofε

tends to keep the various clusters of points in more or less the same position, but leads to a redistribution
of points within the same cluster. Given this information, there is not much to gain by decreasingε beyond
a certain limit; it is much more advantageous to increaseL instead.

The constrained optimization problems described in this paper were solved by programming them in
the modelling language AMPL which has built in automatic differentiation up to second order derivatives.
The Weyl constraints are continuously differentiable and so the optimizer can make direct use of second
derivative information. The optimizer used was KNITRO developed by Byrd and co-workers (Byrdet
al., 1999). KNITRO is an interior point trust region SQP solver and is suitable for solving both large and
small problems.

4 Case Study: Nonlinear High-Purity Distillation Process

4.1 Input signal design and comparison to minimum crest factor approaches

A challenging multivariable process system that benefits from judiciously applied system identification
techniques is high purity distillation; the methanol-ethanol distillation column model developed by Weischedel
and McAvoy (1980) is commonly used as a benchmark problem (Sriniwaset al., 1995). The highly in-
teractive nature of high-purity distillation is reflected in the fact that dynamically the system will tend to
respond in the principal gain direction (consisting of achieving greater purity in one stream at the expense
of purity in the other) while the low gain direction (reflecting conditions where purities in both the distillate
and bottom streams increase simultaneously) is much less evident.

To address the demands of highly interactive systems, one approach is to modify the standard multisine
signal to contain correlated harmonics with high levels of power, which improve the low gain-direction
content in the data and promote better coverage of the output state-space (Leeet al., 2003). The opti-
mization approach per Leeet al. (2003) considers minimizing crest factor (CF), the ratio of thè ∞ (or
Chebyshev) norm and thè2-norm of a signalx (Guillaumeet al., 1991). A low crest factor indicates
that most of the elements in the sequence are distributed near their extremum values. An alternative rep-



resentation of signal distribution similar to crest factor is the Performance Index for Perturbation Signals
(PIPS) (Godfreyet al., 1999). The PIPS measure ranges between 0 and 100% (compared to 1 versus∞ for
crest factor), which gives it an intuitive, practical appeal. Design parameters for the Weischedel-McAvoy
problem determined on the basis of the guidelines per Leeet al. (2003) using dominant time constant
estimates (τL

dom= 5 andτH
dom= 20 min) and user choices ofδ = 0, αs = 2, andβs = 3, lead to parameter

settings ofT = 2 minutes,ns = 189, andNs = 378. A value of the amplification factorγ = 15 was chosen
for a min CF(y) signal with modified spectrum; the resulting input spectrum for this signal is shown in
Figure 3a. Constraints applied to the problem and salient characteristics of these signals are summarized
in Table 2; an output state-space plot is shown in Figure 4a.

A significant benefit of an optimization-based problem formulation for signal design is that nonlinear
model forms can be readily incorporated in the design procedure, which results in an improved ability to
both meet plant-friendliness requirements as well as address the directionality and uniform distribution
requirements in the output for demanding applications. A polynomial Nonlinear AutoRegressive with
eXternal (NARX) input model with structure as proposed by Sriniwaset al. (1995):

y(k) = θ
(0) +

ny

∑
i=1

θ
(1)
i y(k− i)+

nu

∑
i=ρ

θ
(2)
i u(k− i)++

ny

∑
i=1

i

∑
j=1

θ
(3)
(i, j)y(k− i)y(k− j)

+
nu

∑
i=ρ

i

∑
j=ρ

θ
(4)
(i, j)u(k− i)u(k− j)+

ny

∑
i=1

nu

∑
j=ρ

θ
(5)
(i, j)y(k− i)u(k− j)+ ... (13)

was estimated for the Weischedel-McAvoy column and used to generate output predictions for the op-
timizer in both the min CF(y) and Weyl-based signal design scenarios. The benefits of the Weyl-based
formulation over the minimum crest factor signal design in producing a uniform distribution in the output
state-space of the data can be clearly seen by contrasting Figures 4a and 4b: the use of the Weyl-based cri-
terion results in a much more uniformly distributed coverage of the state-space, and a much better suited
dataset for data-centric estimation purposes. The uniform distribution of the output within the bounds
specified in the problem results in a natural balance between the high and low gain information content in
the data. From Table 2 one does notice, however, that the improvement in output state space uniformity is
obtained at the cost of higher crest factor, which consequently reduces the signal-to-noise ratio of the data
in a noisy data setting. As a result there is an inherent tradeoff between these objectives that needs to be
recognized. One way of addressing this issue in practical input design is to include maximum crest factor
bounds as inequality constraints within the Weyl problem formulation; these can be readily incorporated
in the numerical optimization framework described in this paper.

An important difference between these signal designs is observed in the input spectra (Figure 3). In the
min CF (y) case, only the phases and a subset of the Fourier coefficients in the high frequency range of the
multisine signal are chosen by the optimizer, while for the Weyl-based design, the optimization problem
includes a search forall Fourier coefficients and phases, including those corresponding to the correlated
harmonics; this can be seen in Figure 3b. Not only do these extra degrees of freedom in the optimizer
contribute to the improved performance, they reduce the number of decisions madea priori by the user,
leading to a more practical design procedure.

4.2 Application to Model-on-Demand Estimation and Predictive Control

We noted in the Introduction about the increasing importance of data-centric (also referred to as data-
driven) modeling for nonlinear problems. In recent years, data-centric estimation methods have received



significant attention in the systems literature, and signficant applications have been reported (Kulhavý,
2003). One such novel concept for nonlinear identification and control is the Model-on-Demand (MoD)
framework (Stenman, 1999), which is inspired by ideas from local modeling and database systems tech-
nology (Atkesonet al. (1997a; 1997b)). Conceptually, MoD represents a hybrid between local and global
modeling. In MoD estimation all observations are stored on a database, and the models are built “on
demand” as the actual need arises. The Model on Demand predictor relies on small portions of the data
relevant to the region of interest to determine a model as needed (Figure 5). The variance/bias tradeoff
inherent to all modeling is optimized locally by adapting the number of data and their relative weighting.
From a practical standpoint, MoD estimation allows process engineers to naturally extend insight gained
from linear modeling to nonlinear identification and control. Rather than spending time in a difficult
structure selection and parameter initialization, the user can focus on developing informative datasets –
a common requirement for all nonlinear black-box identification approaches. The user can fully exam-
ine the uniformity of coverage the excitation signals produced in the input and output spaces (as done in
the previous subsection) and better understand the impact it has on the nonlinear model validation and
control problem. MoD can be formulated into a comprehensive methodology for nonlinear identification
and predictive control (Braun, 2001; Braunet al., 2000). A Matlab-based tool for MoD estimation and
control, developed by ASU’s Control Systems Engineering laboratory in collaboration with researchers
from the Division of Automatic Control at Link̈oping University is available in the public domain (Braun
et al., 2002).

First, open-loop Model-on-Demand (MoD) estimation is evaluated for the Weischedel-McAvoy dis-
tillation column using for estimation purposes the data arising from the signal designs described in the
Section 4.1. For validation purposes, a different data-centric signal with lower magnitude bounds was
considered, which is shown in Figure 6. For all cases, an implicit second-order ARX structure with unit
delays is used in the MoD estimator, withkmin=20,kmax=756, and local polynomial order = 1 as additional
parameters (Braunet al., 2001; Stenman, 1999).

Analysis of the results shows that data resulting from the min CF(u) signal based on the standard
zippered spectrum provides the worst results of all three cases considered. Because the input-output
data resulting from this signal lacks information content in the [1 -1] output direction, it results in the
poorest prediction on the validation data set (Figure 7). For data resulting from the min CF(y) signal with
modified spectrum, most of the output sequence is located near its minimum and maximum values, but
its corresponding MoD model still seems to produce reasonable predictions in an open-loop sense with a
percent unexplained variance of 0.5% (Figure 8). Nonetheless the MoD model estimated from the Weyl-
based approach, because of the even state-space distribution, results in the most accurate predictions of all
signals considered, with a percent unexplained variance close to 0.09% (Figure 9).

The min CF(y) and Weyl-based MoD models are subsequently evaluated in a closed-loop setting using
the MoD-MPC Toolbox (Braunet al., 2002); the min CF(u) MoD model was not considered in the closed-
loop evaluation because a stable controller response could not be obtained. In both cases the tuning
parameters are PH=35, MH=15, Ywt=[1 0; 0 1] and Uwt=[7 0; 0 7]. A series of setpoint changes that
represent challenges to controller performance for a highly interactive plant such as high-purity distillation
are shown in Figure 10. While stable responses are obtained in both cases, the MoD-MPC controller
relying on the Weyl-based data shows faster settling time, less overshoot, and less interaction than the
one resulting from the min CF(y) MoD model; these desirable performance features of the Weyl-based
MoD-MPC controller point to the effectiveness of this class of signals for closed-loop control purposes in
a demanding process application.



5 Summary and Conclusions

The paper describes a novel constrained optimization-based formulation of the multisine input signal
problem. The objective function arises from the Weyl criterion, which seeks to minimize the geometric
discrepancy of the output in the state-space. As a consequence, these signals can be used in support
of data-centric estimation algorithms. A problem formulation that helped understand design variables
in the Weyl objective was shown and illustrated via a numerical example, culminating in a case study
demonstrating the effectiveness of the design procedure for a high purity distillation column, a challenging
nonlinear, multivariable process system. Validation of the Weyl-based signal design was accomplished in
the distillation column example under both open-loop and closed-loop conditions. Clearly, the power of
the proposed framework lies in its flexibility, allowing the user to incorporate both linear and nonlinear
models for output prediction, time-domain constraints, and information and control-theoretic frequency
domain requirements. The use of state-of-the-art interior-point optimization methods enables the efficient
solution of these nonlinear and nonconvex optimization problems.
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Cy1 Cy2 ∆Cy1 ∆Cy2 ∆Cu1 ∆Cu2

0.5 0.5 0.47 0.47 2.2 2.2

Table 1: Bound and move sizes used for Example Problem in Section 3.

Type Signal (x) CF(x) PIPS(%) max∆x max x min x

min CF (u) design; standard zippered
spectrum

u1 1.21 82.43 0.0025 0.0020 -0.0020
u2 1.22 81.77 0.0026 0.0020 -0.0020
y1 2.48 48.84 0.0037 0.0325 -0.0211
y2 2.19 46.12 0.0031 0.0199 -0.0204

min CF(y) design; modified zippered
spectrum using NARX model prediction
|∆u| ≤ 0.01, |∆y| ≤ 0.008 & |y| ≤ 0.0085

u1 3.74 31.51 0.0100 0.0365 -0.0254
u2 3.25 34.37 0.0100 0.0316 -0.0250
y1 1.30 77.45 0.0051 0.0088 -0.0086
y2 1.31 77.01 0.0082 0.0087 -0.0086

data-centric experiment using NARX model
via a modified zippered spectrum subject to
|∆u| ≤ 0.01, |∆y| ≤ 0.08 & |y| ≤ 0.0085

u1 2.78 37.52 0.0079 0.0292 -0.0268
u2 2.50 41.28 0.0076 0.0240 -0.0225
y1 1.79 56.54 0.0062 0.0084 -0.0082
y2 1.76 57.13 0.0053 0.0082 -0.0083

Table 2: Results summary for signals designed for the Weischedel-McAvoy distillation column Case
Study.
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Figure 1: Output state space comparison for the Example problem,L = 2 and 6,ε = 10−3
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Figure 2: Output state space comparison for the Example problem,ε = 10−2 and 10−6, L = 3
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(b) Weyl-based Approach

Figure 3: Input power spectral densities for Weischedel-McAvoy distillation column: min CF(y) (a) versus
Weyl-based design (b)
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Figure 4: Output state-space analysis for Weischedel-McAvoy distillation column: min CF(y) (a) versus
Weyl-based design (b)



Figure 5: Depiction of local regressor selection for Model-on-Demand estimation
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Figure 6: Validation data’s output state-space for Weischedel-McAvoy distillation column
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Figure 7: MoD estimation and validation results for Weischedel-McAvoy distillation column data arising
from a min CF (u) signal using the standard zippered spectrum design.
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Figure 8: MoD estimation and validation results for Weischedel-McAvoy distillation column data resulting
from a min CF (y) signal with modified zippered spectrum design.
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Figure 9: MoD estimation and and validation results for Weischedel-McAvoy distillation column data
resulting from the Weyl-based signal design.
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Figure 10: MoD-MPC closed-loop setpoint tracking test on the Weischedel-McAvoy distillation column
using MoD Models from the min CF (y) signal (dashed) and Weyl-based (solid) signal designs. Controller
parameters are PH=35, MH=15, Ywt=[1 0; 0 1] and Uwt=[7 0; 0 7]
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