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Abstract—This paper presents a nonlinear approach for data reconciliation. The advantages 
of this approach over the conventional extended Kalman filtering (EKF) are namely, less 
linearization errors are generated in the process, and secondly the choice of the objective 
function is flexible. In this work, two probability density functions, namely the Logistic and 
Lorentz distribution are proposed as the objective function to be optimized in this approach. 
These two functions are proven to be statistically robust, which is an advantage over the 
conventional weighted least squares function. The extended Kalman filter and the modified 
nonlinear approach are implemented and verified via two case studies, namely a simulation 
case study and more importantly an experimental case study of a heat exchanger. The results 
obtained from the simulation case study demonstrated a reduction of approximately 50% error 
of the nonlinear approach over the extended Kalman filter.  
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1. INTRODUCTION 

Process measurements are fundamentally contaminated by errors during the 
measurement, processing and transmission of the measured signal [1-3]. The errors can arise 
from multifarious sources such as instrument degradation and malfunction, changes in ambient 
conditions, signal conversion noise and so on. The presence of such errors means that the 
measurements will not obey the laws of conservation. Errors in measured data often lead to 
considerable deterioration in plant performance; errors of small magnitude can lead to 
deterioration in the performance of control systems, whereas errors of large magnitude can 
offset the gains achievable through process optimization.                                                          
 

A simplified understanding of techniques used to process measurement data can be 
split into three basic steps, namely variable classification, gross error detection and data 
reconciliation (Figure 1). Variable classification deals with ascertaining which variables are 
observable or unobservable, redundant or under determined. Gross error detection identifies 
and treats non-random errors. Variable classification and gross error detection are not within 
the scope of this work.  The third step for processing measurement data is that of data 
reconciliation. Through utilizing spatial or temporal redundancies, data reconciliation adjusts 
the process measurements to improve its accuracy. The reconciled estimates are expected to 
be more accurate than the measurements, and more significantly, are also consistent with the 
conservation laws and other constraints.  

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Essential steps for processing measurement data 
 

The most prevalent form of dynamic data reconciliation is Kalman filtering. Kalman 
filter was originally designed for linear systems and it was proved mathematically to be the 
optimal estimates for linear systems in the presence of Gaussian noise [4]. Modifications to 
Kalman filter have been developed to handle nonlinear systems. These adjustments generally 
include linearizing the nonlinear system equations with first-order Taylor's series expansion. A 
common modification leads to the extended Kalman filter where the linearization takes place 
about an estimated trajectory.  

 
Kalman Filter approaches are limited in relevance to data reconciliation (DR) problems 

for which weighted least squares estimators are appropriate. In cases where the measurement 
noise is non-Gaussian, the Kalman filter output may be biased. Secondly, the performance of 
the extended Kalman filter is directly related to the quality of approximations made in the state 
and covariance estimates. Most chemical engineering processes often function dynamically in 
highly nonlinear regions. Under such conditions, linearization may generate errors and the 
extended Kalman filter may produce either biased or divergent estimates. 

 
Moreover, it may be difficult to tune the Kalman filter to achieve a satisfactory 

performance. Poor initial guess of the covariance matrices can also lead to incorrect 
estimation. In addition, the Kalman filter approaches do not support the inclusion of variable 
bounds and inequality constraints. The inclusion of inequality constraints is important because 
process models may be described in terms of inequalities. 

 
In this paper, a nonlinear dynamic data reconciliation (NDDR) is utilized to overcome 

the problems of the Kalman filter. The approach undertaken in this paper is similar to that 
proposed by Liebman et al [3]. The use of other objective functions to replace the weighted 
least squares (WLS) objective function is also proposed. The proposed approach is extended 
to the combined data reconciliation and parameter estimation (PE), which results in both 
parameter and state estimates to be consistent with the process model equations.  
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The combined data reconciliation and parameter estimation (DRPE) is expected to 
generate more accurate estimates. This is confirmed by the findings of MacDonald and Howat 
[5], who examined both the sequential and combined DRPE and concluded that more reliable 
estimates are obtained using the combined method.  

 
This paper is organized as follows. Section 2 presents the modified nonlinear 

approach undertaken in this paper. In Section 3, the proposed approach is applied to a 
simulation case study and the results presented and discussed. In Section 4, the proposed 
approach is applied to an experimental case study and the results presented and discussed. 
Finally, conclusion is presented in section 5. 

 

2. NONLINEAR DYNAMIC DATA RECONCILIATION 

Since the Kalman Filter approaches are limited in its capability to handle nonlinear 
processes, this paper undertakes a nonlinear dynamic data reconciliation approach [3]. This 
approach does not introduce linearization errors and therefore can handle processes with 
strong nonlinearities. Moreover, the nonlinear approach does not depend on any assumption 
of measurement error distribution. Inclusion of inequality constraints and variable bounds are 
also supported. 

 
2.1 Dynamic Data Reconciliation Problem Formulation 

 
The general NDDR problem can be formulated as: 
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where [ ]σyyf ;ˆ, (t) =optimization objective function; 
           y=discrete measurements; 
         σ=measurement noise standard deviations; 
          g=differential equation constraints; 
         h=algebraic equation constraints; 
        r=inequality constraints; 
 
Although for most applications, the weighted least squares objective function is 

appropriate, there are some situations whereby using the weighted least squares objective 
function will lead to biased estimates. An important aspect of equation (1) is that under such 
conditions, other suitable objective functions may be used. 

 
Another important feature equation (1) is the incorporation of inequality constraints and 

bounds r. These constraints may become very important when handling unmeasured input 
estimation or measurement bias. 



 
2.2 Objective Functions 

 
In the nonlinear dynamic data reconciliation approach, the choice of the objective 

function is important. This paper proposes two statistically robust density functions, namely the 
Logistic and Lorentz distribution.  

 
The Logistic distribution has the form: 
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The Lorentz distribution has the form: 
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where σ  is the standard deviation of both functions. 
 

2.3 Statistical Robustness of Estimators 
 
This paper follows the approach taken by Hampel et al [6] in analyzing the statistical 

robustness of estimators, which is based on the Influence function (IF). The influence function 
assesses the amount of influence that a residual u0 has on the estimation. The exact derivation 
and analysis is found in Hampel et al [6]. For maximum likelihood estimators, the influence 
function can be conveniently taken as ))](([/)( uflnuu ∂∂=ϕ . 

 
In order for the estimator to be robust, the influence function should be bounded such 

that any single large residual cannot distort the estimation. Additional criteria would be for the 
influence function to approach zero as the residual gets larger, and to be continuous such that 
the estimator is well-behaved. The influence function will now be used to analyze the 
robustness of the WLS, Logistic and Lorentz-based estimator. The graph of their influence 
function is illustrated in Figure 2.  
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Figure 2. Influence functions of the various estimators 

 
Figure 2 illustrates that the influence function of the WLS estimator is linear and 

unbounded for large values of residual. Correspondingly, this means that a single gross error 
can have a proportionally large influence on the estimation, hence leading to biased 
estimation. Essentially, this implies that the WLS estimator is not a robust estimator. 

 
Conversely, the influence functions of the Logistic and Lorentz-based estimator are 

bounded even as the value of the residual increases. Hence, this implies that large errors will 
have bounded influence on the estimation. The influence of the two proposed estimators fulfils 
the criteria of statistically robust estimator, as described earlier. 

 
In summary, the two proposed objective functions are sufficiently robust and more 

importantly can be used without a prior assumption about the actual measurement error 
distributions [7,8]. In terms of statistical robustness and characterization of the errors, the two 
proposed functions are far more superior to the weighted least squares.   

 
2.4 Solution Strategy 

 
The NDDR problem described in equation (1) involves the optimization of an objective 

function through the fine-tuning of estimate functions defined by differential equations and 
inequalities. In this paper, the strategy used for solving the NDDR problem is to optimize the 
objective function by adjusting the initial conditions ŷ(0) and use numerical integration to solve 
the differential equality constraints. 

 
The optimization problem generally does not lead to an analytical solution. Many 

solvers have been proposed, such as the successive linearization [9], the QR factorization for 
bilinear systems [10], and the nonlinear sequential quadratic programming (SQP) [11,12]. In 
this paper, the SQP is utilized since it is not limited to linear or bilinear systems, and is not 
restricted to any form of objective function. 

 
Improvements can be still be made, at the expense of increased computational 

burden; the use of finite orthogonal collocation [3,13,14] is one such method. 



Given measurements, the optimal dynamic data reconciliation approach would utilize 
all available information from the onset of the process until the current time. However, such a 
strategy would lead to an optimization problem of ever expanding dimension. A moving 
window approach can be used to resolve such a problem. The approach is as follows: If the 
latest available measurements are at time t1, a window of size W∆t can be defined from t1-W∆t 
to t1. Only measurements within the window will be reconciled during each optimization 
(Figure. 3). A possible implementation can be summarized as [3]: 

(a) Collect process measurement data 
(b) Perform optimization over the time horizon, [t1-W∆t,t1) 
(c) Use the reconciled estimate, ŷ(t), for on-line control  
(d) Return to step (a) at the next time step 
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Figure 3.  History horizon for an optimization run 

 

3. CASE STUDY 1: SIMULATION OF TWO CSTRS 

The nonlinear approach is first applied to a simulation case study of two continuously-
stirred tank reactors in series [15]. The system consists of two constant volume reactors, in 
which an irreversible exothermic reaction A→B occurs (Figure. 4). The effluent stream from the 
first reactor serves as the feed stream for the second reactor. The reactors are cooled by a 
single coolant stream flowing concurrently with the reaction stream. The process model 
consists of 4 nonlinear differential equations: 
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where T1,T2,CA1,CA2 is the temperature of reactor 1, reactor 2 and the concentration of 

effluent in reactor 1 and reactor 2 respectively. The other symbols are constants and their 
values are listed in Table 1.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Continuously-stirred reactor system 

 
Table 1. Nominal parameters used in simulation 

 
Symbol Description Nominal Values 

Used in Simulation 
Q, qc Flow rate of feed and coolant 100 L/min 
CAf Concentration of incoming feed 1 mol/L 
K0 Pre-exponential factor 7.2 x1010 /min  
E/R Normalized activation energy   10000 K 
Tf, Tcf Temperature of incoming feed, coolant 350 K 
∆H Heat of reaction -4.78 x 104 J/mol 
V1,V2 Volume of Reactor 1 and 2 100 L 
Cp, Cpc Specific heat capacity of feed, coolant 0.239 J/g.K 
ρ, ρc Mass density of reactor contents, coolant 1000 g/L 
U1A1,U2A2 Heat transfer coefficient in Reactor 1, 2 1.67 x 105 J/min.K 

 
 
3.1 Performance Measures 

 
Two measures will be used to quantify the efficiency of the dynamic data 

reconciliation: the relative efficiency and the percentage error versus time. The relative 
efficiency, iε , is a normalized parameter and it can be computed as: 

MSEi
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i
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where min(MSE) is the mean-square error of the best estimation method.   
 
The percentage error, p, is computed as: 
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The plot of the percentage error over time is an indication of the reliability of the 

estimation method. 
 

3.2 Results and Analysis 
 
Two results are presented: firstly, the comparison of EKF with the nonlinear approach. 

Secondly, for the nonlinear approach, the comparison of objective functions is presented. 
 

 Comparison of EKF with nonlinear approach 
In this comparison study, only Gaussian noise is generated. Figure 5 illustrates the 

estimate of T1, and Figure 6 illustrates the percentage error obtained using the extended 
Kalman filter and the nonlinear approach.  Figure 5 shows that although the estimate obtained 
using the extended Kalman filter is initially close to the true value of the process variables, the 
estimates diverge rapidly from the true values (and measurements) and eventually attain a 
steady-state bias of 50% error (Figure 6). Tuning the extended Kalman filter differently failed to 
provide reliable estimates. In contrast, the same figure shows that the estimates obtained 
using the nonlinear approach is very close to the true values. The errors in the estimates are 
only a mere 2% and more importantly, the estimates displayed the same dynamic trends. This 
result clearly illustrates the robustness and reliability of using the nonlinear approach over the 
extended Kalman filter in the presence of process nonlinearities. 
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Figure 5.  Estimate of T1 using EKF and NDDR 
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Figure 6. Percentage error using EKF and NDDR 

 
 

 Nonlinear DR: Comparison of objective functions 
In the second comparison study, non-Gaussian distributed errors are generated. It is 

important for the proposed nonlinear dynamic data reconciliation to be robust; robustness in 
this aspect refers to capability to characterize the measurement errors. Figure 7 illustrates the 
relative efficiency obtained using different objective functions. The maximum relative efficiency 
is 1.00, which indicates it as the best estimator. 
 

The result shows that the WLS estimator has the lowest relative efficiency and is 
therefore the least reliable and robust in handling non-Gaussian errors; this is not surprising as 
it is shown earlier (section 2.3) that the WLS is statistically not robust. In contrast, the 2 
proposed functions demonstrated improved efficiency as they have the highest relative 
efficiency for all the other noise distributions. 
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Figure 7.  Relative Efficiency of objective functions 



4. CASE STUDY 2: HEAT EXCHANGER IMPLEMENTATION 

The extended Kalman filter and the nonlinear dynamic data reconciliation strategies 
are tested on a process plant, PCT23 Trainer from Armfield (Figure 8). The subsystem, as 
indicated by a solid line, is used for this experimental study. 
 

 
Figure 8.  Schematic of the Heat-Exchanger Pilot Plant [16] 

 
 

A simplified but realistic model of a fluid-fluid heat-exchanger can be expressed as 
[17]: 
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temperature of the output hot stream and cold stream respectively and the other symbols are 
constants, except for UA and M, which are unknown parameters to be estimated. The details 
are listed in Table 2.  
 
 
 
 
 
 
 
 
 



Table 2. Nominal values of parameters used in experiment 
 

Symbol Description Nominal 
values  used 

Cρ,hot Cρ,cold Specific heat capacity of hot/cold stream 4.18 kJ/kg.oC 
Th,in Temperature of incoming hot stream 71.2 oC 
Tc,in Temperature of incoming cold stream 22.0 oC 
F1 Volume flowrate of the cold stream 2.82e-3 kg/s 
F2 Volume flowrate of the hot stream 4.39e-3 kg/s 
UA Overall effective heat transfer coefficient Unknown 
M Mass of hot/cold water held Unknown 

 
 
4.1 Model Verification 
 

The first requirement of any data reconciliation procedure is an accurate process 
model. To verify the accuracy of the model, the output obtained using the model is compared 
to the experimental data and is presented in Figure 9. The model output matches the trend 
found in the data, except for a constant difference and this is expected because a real physical 
process may differ from a theoretical model; it is therefore appropriate to use the model. 
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Figure 9.  Output results from model and measurement data 

 
 
4.2 Performance Measures 

 
There is no basis to objectively and quantitatively assess the accuracy of the 

estimates of the variables and parameters because unlike the simulation case, the true 
variable and parameter values are unknown. Although some faults are introduced into the 
measurements, the graph of the variation of the state variables with time demonstrates the 
general trend of the variables quite obviously. Hence, it is possible to compare estimates with 
the measurements and qualitatively assess the performance of the different data reconciliation 
techniques. 



 
4.3 Results and Analysis 
 

The parameter estimates obtained is shown on Table 3 and the estimates of the states 
are illustrated in Figure 10. It is difficult to draw any conclusion based on the parameter 
estimates but Figure 10 suggests some analysis of the performance of the estimators. 

 
The EKF estimate diverges rapidly and after only 3 samples, the estimates are at least 

three times larger than the measurements (Figure 10a). In fact, the estimate diverges so 
rapidly that it reaches the magnitude of a few thousand degrees. This can be explained by the 
fact that linearization generates errors and hence causes the divergence. 

 
On the other hand, the nonlinear approach generally shows much smoother estimation 

than the EKF and clearly reflects effective filtering. However, the WLS estimates (Figure 10b) 
are ‘noiser’ than the other 2 proposed estimators. The estimates obtained using the Logistic 
and Lorentz estimators are much smoother than the measurements (Figure 10c and 10d). 

 
In summary, the Logistic and Lorentz distributions are better choices than the 

weighted least squares for the objective function when NDDR is used. This is because, as 
explained earlier, these two functions are at least statistically robust and more reliable than the 
weighted least squares function.  

 
 

Table 3. Parameter Estimates 
 

Methods Parameters 
 M UA 

Extended Kalman Filter Failed to estimate Failed to estimate 
Nonlinear approach using WLS 0.35150 0.021247 
Nonlinear approach using Lorentz 0.40811 0.024113 
Nonlinear approach using Logistic 0.39439 0.024093 
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 (c) 
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Figure 10. Estimate of T5 using (a) EKF (b) NDDR WLS 

(c) NDDR Logistic (d) NDDR Lorentz 
 
 



5. CONCLUSION 

Dynamic data reconciliation is of more significance than the steady state data 
reconciliation problem because most processes are operating dynamically. In this paper, a 
nonlinear dynamic data reconciliation algorithm for online estimation is presented. Since most 
practical processes are nonlinear in nature, the nonlinear method is superior to the extended 
Kalman filter because it does not generate linearization errors.  

 
In addition to the above-mentioned advantage over the extended Kalmanfilter, the 

nonlinear technique also allows objective functions other than the weighted least squares 
function, and supports the inclusion of variable bounds and inequality constraints. The 
importance of the objective function and the capability to include variable bounds is 
demonstrated via two case studies. 

 
Two density functions are proposed as viable choices for the objective function in the 

nonlinear algorithm, namely the Logistic and Lorentz probability density functions. The 
estimators based on these two functions are statistically robust and hence may be used 
without any prior assumption of error distribution. 

 
The results obtained from the simulation case study demonstrated a marked reduction 

of 50% error of the modified approach over the EKF.  Also, the results obtained via the 
experimental case study demonstrated that the proposed Logistic/Lorentz-based objective 
functions are able to obtain smoother estimates than the weighted least squares objective 
functions. 
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