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ABSTRACT 
 
The purpose of this study is to find the analytic solution of determining the optimal capacity 

(lot-size) of batch-storage network to meet the finished product demand under random 
failures of operating time and/or batch material.  The superstructure of the plant consists of 
a network of serially and/or parallel interlinked batch processes and storage units.  The 
production processes transform a set of feedstock materials into another set of products 
with constant conversion factors.  Final product demand flow is susceptible to short-term 
random variation of cycle time and batch size as well as long-term variation of averaged 
trend.  Some of production processes have random variation of product quantity.  The 
spoiled materials are treated through regeneration or waste disposal processes.  All other 
processes have only random variation of cycle times.  The objective function of 
optimization is minimizing the total cost composed of setup and inventory holding costs as 
well as the capital costs of constructing processes and storage units.  A novel production 
and inventory analysis, PSW (Periodic Square Wave) model, provides a judicious graphical 
method to find the upper and lower bounds of random flows.  The advantage of PSW 
model comes from the fact that the model provides a set of simple analytic solution in spite 
of realistic description of the random material flow between processes and storage units 
and consequently the computation burden is significantly reduced.  The resulting simple 
analytic solution can greatly enhance the proper and quick investment decision at the early 
plant design stage confronted with highly uncertain business environment. 
. 
 
 



  

Introduction 
 
The plant structure is composed of a batch-storage network that can cover most supply 

chain components such as raw material purchase, production, transportation and finished 
product demand.  Optimal design of batch-storage network has been studied by Yi and 
Reklaitis using Periodic Square Wave (PSW) model (2002, 2003, 2004).  In this study, 
waste treatment processes are added to the network.  The processes in this study will be 
classified into three types according to random characteristics.  The first type processes 
possess the uncertainty only in operating time.  The second type processes possess 
uncertain product batch quantity because of random quantity of off-spec materials.  The 
third type processes possess the uncertainty in both operating time and batch quantity.  
Considering the uncertainties in customer order time and quantity, product demand 
corresponds to type 3 process.  Some parts of production processes have the 
characteristics of type 2 process.  Type 2 processes are closely related with waste 
treatment processes.  Raw material purchase, transportation and some parts of production 
processes are in the category of type 1.  Most processes have uncertainties in both 
operating time and batch quantity but, considering the complexity of research, we will 
exclude joint uncertainty of operating time and batch quantity from the research scope of 
this study except that the product demand has both uncertainties as given parameters.  
This study will divide the demand variation into long-term trend and short-term randomness.  
The mid-term seasonality can be considered as a part of long-term trend or can be 
incorporated into the model by decomposing the periodic signal into sum of periodic square 
waves.  Long-term trend of demand is averaged monthly or yearly and therefore the near 
future value of long-term trend is relatively accurately predictable.  The far future prediction 
error of long-term trend can be reduced as it approaches to near future.  To accommodate 
long-term trend into production plan, chemical plants have used multiperiod formulation 
since half century ago.  In this study, we will enlarge the PSW model capability to the 
multiperiod formulation.  Note that multiperiod formulation is non-periodic opposed to the 
basic assumption of PSW model.  Short-term random change of any processes will be 
treated with the PSW model and a judicious graphical method.  The great advantage of 
using PSW model to deal with uncertainty exists in no further computational increase 
thanks to analytical solutions.  Thus, overall computation time is determined by the 
multiperiod formulation to compute average flow rates through the network.  The 
computation time of the multiperiod formulation suggested in this study takes about 7 times 
of the same size linear programming problem (Yi and Reklaitis 2004).  
 
Definition of Parameters and Variables  
 
We follow the definition of parameters and variables in Yi and Reklaitis (2003).  A 

chemical plant, which converts raw materials into final products through multiple 
physicochemical processing steps, is composed of a set of storage units (J) and a set of 
batch processes (I).  Note that storage index Jj∈  is superscript and process index Ii∈  
is subscript.  We assume that one storage unit stores one material and therefore the 
storage index j corresponds to material index.  Transportation processes are considered 
as a subset of batch processes without loss of generality.  Each storage is involved with 
five types of material movement, purchasing from suppliers ( )( jKk∈ ), shipping to 
consumer demand ( )( jMm∈ ), discharging to waste disposal sink ( )( jNn∈ ), feeding to 
production processes and producing from production processes.  
 



  

 
 

Figure 1.  Flow of Type 1 Process 
 

 
 

Figure 2.  Schematic Diagram of Type 2 Process 
 

We will consider 3 types of processes prone to random failures in this study.  Figure 1 
and 3 show the flows of type 1 and 2 process respectively. Figure 2 shows a typical 
configuration of type 2 process.  The type 1 process does not include batch material loss 
or batch size change but only include random operating time loss or random increase of idle 
time.  The type 2 process includes batch material loss and the spoiled material should be 
treated specially through waste treatment processing routes.  The failed batch in type 2 
process consumes not only feedstock materials but also production time equivalent to 
processing cycle time.  We put assumptions that the batch size of type 1 process and the 
cycle time of type 2 process are not random though they are unknown.  It is very unlikely 
that, in these modernized society, raw material purchase and transportation processes 
accompany frequent batch material losses and therefore, they are exclusively considered 
as type 1 process in this study.  Production processes have both types.  Mixing or 
blending processes usually do not have batch material loss and therefore, correspond to 
type 1 process.  However, many reaction processes commonly have batch material loss 
and correspond to type 2 process.  Note that the spoiled material in failed batch of type 2 
process undergoes regeneration or waste treatment processing steps.  In this study, the 
set of type 1 production processes will be denoted by 11 Ii ∈  and the variables or 
parameters related with type 1 production process will have subscript 1i . The set of type 2 
production processes will be denoted by 22 Ii ∈  and the variables or parameters related 
with type 2 production process will have subscript 2i .  Note that IIIi =∪ 2  and 

∅=∩ 2IIi .  Each production process requires multiple feedstock materials of fixed 
composition ( j

if 1
 or j

if 2
) and produces multiple products with fixed product yield ( j

ig 1
 or 

j
ig 2

).  For type 2 process, the spoiled material of failed batch goes to the storage units 
other than the storage units where the product goes according to fixed waste yield ( j

ig 2
ˆ ).  
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Figure 3.  Flow of Type 2 Process 
 
The material flow from process to storage (or from storage to process) is represented by 

the Periodic Square Wave (PSW) model when there is no failure (Yi and Reklaitis, 2003).  
Each production process is supposed to produce a batch of product during every cycle time 
iω .  The cycle time of a production unit is composed of a storage operation time 

)(or  ` iiii xx ωω ′  and other processing time.  Note that the left quotation mark on the variable 
represents the variable is defined for the feeding flow to a production process and the right 
quotation mark on the variable represents the variable is defined for the discharging flow 
from a production process.  The processing initiates at the start-up time )(or  ` ii tt ′ .  
Therefore, the material flow representation of PSW model for production process is 
composed of four variables: the batch size iB , the cycle time iω , the storage operation 
time fraction )(or  ` ii xx ′ , the start-up time )(or  ` ii tt ′ .  The material flows of raw material 
purchased, waste disposal and finished product sold are also represented by four variables 
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B  will be considered as random variables.  For the convenience of presentation, the 
variables without superscript and subscript, xB  and ,ω  represent the batch size, cycle time 
and storage operation time fraction of any process of raw material purchase, production or 
finished product demand.  The cycle times of type 1 processes are random variables, 
which are denoted as bold character )( lω  where (l) is the order of batch as is shown at 
Figure 1.  Suppose that )(lω  have identically independent distribution functions with 

respect to (l).  ω  is the mean of )(lω  and B  is (mean) batch size and both are 
unknowns.  For a given convergence limit 10 1 <<< ε  and a confidence level 10 1 << δ , 
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choose the least integer η  so that 11
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Note that, from the assumption, 

22 ii ω≡ω  for type 2 processes.  The feed flow to the type 
2 process is assumed to have no uncertainty, that is, it has constant cycle time 
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this study.  This is required for the graphical analysis to find the upper and lower bounds of 
flow as are shown at Figure 4 and 5.  We can relax this requirement with more complicated 
graphical analysis in the future study.  Define long cycle time ωηω ≡~  and total failure 
duration in long cycle time ωα ~)1( −≡d .  ω~  has the meaning of the least period within 
which all random effects diminish with proper confidence level.  η  is called number of 
batch in long cycle time.  It has the meaning of the least number of batch during which all 
random effects diminish with proper confidence level.  Note that α  and η  are given 
parameters.  Both parameters are estimated from the past operating history and/or the 
characteristics of the same kind of process built in other plant.  For type 1 processes, ω  
is an unknown to be determined.  For type 2 processes, )(

22 ii ωω =  is an unknown. 
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Figure 4.  Two Extreme Cases of Random Failure 
 
What is needed in this study is maximum, minimum and average inventory levels rather 

than actual inventory level.  Maximum inventory level will be used to compute the storage 
size.  Minimum inventory level will be used for the optimization constraint so that inventory 
level should be nonnegative.  Average inventory level will be used to compute the 
inventory holding cost of the optimization problem.  Instead, the upper/lower bound and 
average of accumulated material flow for each stream connected to the storage unit will be 
computed.  Denote )(1 tF  as random flow of a type 1 process.  Note that the flow has 
constant average flow rate D measured during a long cycle time. )(1 tF  has two extreme 

flow cases as can be seen at Figure 4.  The upper bound of accumulated flow ∫
t

(t)dt
0

1F  

occurs when all the operating time failures occur at the end of repeated long cycle times.  

ωη
α

⎟
⎠
⎞

⎜
⎝
⎛ −= 11d

η

ω ωx

)(1 tF
B

t

ωη
α

⎟
⎠
⎞

⎜
⎝
⎛ −= 11d

)(1 tF

Case Bound Upper (a)

Case BoundLower  (b)



  

The lower bound of accumulated flow occurs when all the operating time failures occur at 
the start of repeated long cycle times.  Note that we can define these two extreme cases 
with probabilistic distributions and confidence levels, too.  Figure 5 shows the 
corresponding accumulated flow patterns.  We can easily find the upper and lower bounds 

of ∫
t

(t)dt
0

1F . 
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Figure 5.  Flow Accumulation Functions for Two Extreme Cases. 
 

Note that ωη
α ⎟

⎠
⎞

⎜
⎝
⎛ −= 11d  for type 1 processes.  The average of accumulated flow ∫

t

dtt
0

1 )(F  

is simply chosen to be in the middle of the upper and lower bounds.   
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any failures.  The analysis to find the upper and lower bounds of ∫
t

j
i (t)dtF

0
2

 follows those of 

Yi and Reklaitis (2003).  The average of )(
2
tF j

i  is selected as the middle of upper and 
lower bounds (Yi and Reklaitis, 2003). 
The upper/lower bounds and average of finished product demand flow follows those of 

)(1 tF .  Note that there can be other choices of average flows depending on the properties 
of randomness for specific problems. 
The upper bound of inventory level jV  is computed by adding the upper bounds of all 

incoming flows and subtracting the lower bounds of all outgoing flows from initial inventory.  
The lower bound of inventory level jV  is computed by adding the lower bounds of all 
incoming flows and subtracting the upper bounds of all outgoing flows from initial inventory.  
The average inventory level jV  is computed by the averages of accumulated flows. The 
objective function for the design of the batch-storage network is to minimize the annualized 
total cost consisted of the raw material procurement cost, the setup cost of processes, the 
waste disposal cost, the inventory holding cost of storage units and the capital cost of the 
processes and storage units at a given availability and number of batch in long cycle time of 
each process.  The constraints of optimization are no depletion of all storage units, that is 

0≥jV . 
The solution procedure to solve the Kuhn-Tucker conditions of the optimization problem 

and the overall computation procedure is the same as those in Yi and Reklaitis (2003).  At 
first, optimal average flow rates should be obtained by numerically solving the second level 
problem.  Then, analytical solutions of cycle times, batch sizes, storage sizes and initial 
startup times can be calculated by using simple equations. 
 



  

Example Plant Design 
 

 
Figure 6.  An Example Plant Design Problem 
 
Suppose the plant that produces 3 finished products from 4 raw materials as shown at 

Figure 6.  Figure 6 also includes most input data for computation.  A design problem 
without process I7, storage J10 and J11 was studied in Yi and Reklaitis (2003).  process I1 
and I2 are type 2 processes and the waste materials of failed batches are collected in 
Storage J10.  The waste material J10 can be disposed through the waste disposal process 
J10 or can be regenerated through the Process I7 to raw materials J2 and J4.  The 
process I7 is also type 2 process and the waste material goes to storage J11.  The waste 
material J11 is disposed through the waste disposal process J11.  All the other processes 
are type 1 processes.   
Figure 7 shows the dependency of optimal solutions: batch size, cycle time, cost of 

process and storage size, on availability.  6 cases were considered depending on type of 
process and number of batch in long cycle time.  The marks of diamond, square and 
triangle were used for type 1 process.  The marks of x, x with vertical bar and circle were 
used for type 2 process.  The marks of diamond and x used 10=iη .  The marks of 
square and x with vertical bar used 20=iη .  The marks of triangle and circle used 30=iη .  
All optimal solutions return to the solutions in Yi and Reklaitis (2003) when the availability is 
1.  Type 1 process and type 2 process show different graph patterns.  The cycle time and 
cost of process of type 2 process are bigger than those of type 1.  The batch size and 
storage size of type 2 are smaller than that of type 1.  Increasing iη  reduces batch size 
and cycle time but increases cost of process and storage size.  The effect of iη  is 
relatively insignificant compared to availability except storage size.  The storage size of 
type 2 process has a maximum with respect to availability. 
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Figure 7.  The Variation of Optimal Solutions With Respect To Availability 
 
 

Conclusion 
 

This article determines the optimal size of batch processes and storage units 
interconnected in network structure when the processes are bound to random failures of 
operating time and material spoilage.  PSW model was judiciously used to find the upper 
and lower bounds of flows susceptible to short-term random variation of cycle time or batch 
size.  Multiperiod formulation was combined with PSW model to count on long-term trend 
of product demand.  Instead of usual definition of random properties such as mean and 
variance, availability and number of batch in long cycle time were introduced as input 
parameters.  The availability is widely used in process reliability analysis such as FMEA.  
The number of batch in long cycle time is proportional to variance.  These parameters 
were more practical and easier to estimate based on human perception.  The main 
sources of random failures were operating time loss and batch material loss.  Waste 
regeneration and disposal processes were installed to treat failed batch materials.  The 
optimization problem was consisted of minimizing the sum of setup cost, capital cost of 
processes, inventory holding cost and price of materials under the constraints of meeting 
random product demand and no depletion of materials.  PSW model with judicious 
graphical analysis of accumulated flows provided great flexibility to accommodate the 
random variation of various types of material flows into one optimization formulation 
resulting in analytical solutions.  Analytical solutions greatly reduce computational burden 
which is the unique achievement of this study.  The remained variables that could not be 
solved analytically were average flow rates.  Concave cost minimization network flow 
problem should have been solved for obtaining optimal average flow rates.  The 
computation time to solve this problem with well-known algorithm was about 7 times of the 
same size linear programming problem.   
 



  

Even though the average flow rates can be obtained by other methods such as ordinary 
planning model, the optimality of other variables are still valid.  
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