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ABSTRACT 

Phase stability (PS) problems play a crucial role in the simulation, design and 
optimization of separation process such as distillation and extraction. The problem involves the 
global minimization of tangent plane distance function (TPDF) known as tangent plane 
criterion. In this work, two promising global optimization techniques: differential evolution (DE) 
and tabu search (TS) have been evaluated for the first time and compared for benchmark and 
PS problems. A local optimization technique is used at the end of both TS and DE to improve 
the accuracy of the final solution. Benchmark problems involve 2 to 20 variables with a few to 
hundreds of local minima whereas PS problems consist of multiple components and modeled 
with popular thermodynamic models. The results show that DE is more reliable but 
computationally less efficient compared to TS for benchmark and PS problems tested. 

 
Keywords: Phase stability problems; Tangent plane distance function; Benchmark problems; 
Differential evolution; Taboo search 
 
INTRODUCTION 

Phase stability (PS) problems play a significant role in the design and analysis of 
chemical processing operations. The problem involves determining whether a given phase with 
certain composition, pressure and temperature is stable or will split into multiple phases. 
Phase stability is often tested using the well known tangent plane criterion (Baker et al., 1982). 
The criterion formulates the tangent plane distance function (TPDF), defined as the vertical 
distance between the molar Gibbs free energy surface and the tangent plane at the given 
composition, as the objective function. The problem can be solved using two approaches 
namely: solving a system of non-linear equations for stationary points (Michelsen, 1982) and 
the direct minimization of TPDF function. The former approach is conventional approach where 
the solution obtained may be trivial or local, and is mainly dependent on the initial guess. The 
latter approach employs the global minimization techniques because of the high nonlinearity 
associated with the objective function. The presence of comparable minima (i.e., function value 
at a local minimum is nearly equal to that at the global minimum) in TPDF poses a 
computationally challenging problem to many of the global optimization methods. The 
complexicity in the TPDF is mainly due to the thermodynamic models that are used to describe 
the non ideality in the Gibbs free energy function.  

A review of several works using tangent plane criterion for PS problems can be found 
in Rangaiah (2001). Recently, Tessier et al. (2000) implemented interval Newton technique for 
PS analysis. The examples are modeled by non-random two liquid (NRTL) and universal 
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quasi-chemical (UNIQUAC) thermodynamic models. They also proposed two enhancements 
for interval Newton method. The results indicate that the computational efficiency of the 
enhanced methods is better compared to the original one. Nichita et al. (2002) used a global 
optimization method namely, tunneling method for PS analysis. The problem has been 
formulated both in conventional approach (i.e., composition space) and in reduced variable 
approach. In the latter case, the number of variables does not depend on the number of 
components in the mixture. The results show that, the method is reliable in solving the PS 
problems. Balogh et al. (2003) used a modified TPDF such that the zeros of the objective 
function become its minima, since it is advantageous to search for minima with known zero 
minimum value. They employed a method namely, stochastic sampling and clustering to locate 
the minima of the modified TPDF. The results show that the method is able to solve small to 
moderate size problems in an efficient and reliable way.  

 
However, most of the methods employed for PS problems are local in nature and 

relatively few stochastic global optimization techniques have been explored for these 
problems. Stochastic optimization techniques are as powerful as deterministic techniques and 
are computationally efficient than the latter. Differential evolution (DE) (Storn and Price, 1997) 
and tabu search (TS) (Chelouah and Siarry, 2000) are some of the most promising methods 
reported in the literature. Even though they have been tested for many applications in chemical 
engineering and other fields (Mayer et al., 2005; Lin and Miller, 2004a; Lin and Miller, 2004b; 
and Bingul, 2004), they have not been applied to PS problems. Also, DE and TS have not 
been comprehensively compared for benchmark problems. Hence, in this work, both DE and 
TS are first evaluated and compared for benchmark problems with 2 to 20 variables but 
involving a few to hundreds of local minima. The methods are then tested for PS problems 
involving multiple components and popular thermodynamic models. The evaluation includes 
both reliability and computational efficiency using practical stopping criteria. 

 
DIFFERENTIAL EVOLUTION  

DE (Storn and Price, 1997) is a population based direct search method. The algorithm 
implemented in this study (Figure 1) starts with specifying the optimal tuning parameters 
namely, amplification factor (A), crossover constant (CR), type of strategy, population size 
(NP) and maximum number of generations (Genmax). The algorithm generates the initial 
population randomly using the uniform distribution to cover the entire solution space. The 
individuals are checked for the boundary violation to see if any individual is generated in the 
infeasible region. The infeasible points are replaced by generating new individuals. The 
objective function values of all the individuals are calculated and the best point is determined. 
The algorithm then performs three main steps: mutation, crossover and selection. Mutation 
and crossover operations are performed to diversify the search thus escaping from the local 
minima. The mutant vector is generated for each randomly chosen target vector Xi, G by 

Vi, G+1 = Xr1, G + A (Xr2, G – Xr3, G);         i = 1, 2, 3, …, NP.    (1) 
where r1, r2 and r3 belongs to the set {1, 2, 3, …, NP} and Xr1, G, Xr2, G and Xr3, G represents the 
three random individuals chosen in the current generation, G, to produce the mutant vector for 
the next generation, Vi, G+1. The random numbers r1, r2 and r3 should be different from the 
running index, i, and hence NP should be • 4 to allow mutation. A is a real value between 0 
and 2 which controls the amplification of the differential variation between the two random 
vectors.  
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Figure 1: Flow chart of DE-QN algorithm 
 

In the crossover step, the trial vector, Ui, G+1 is produced by copying some elements of 
the mutant vector, Vi, G+1 to the target vector Xi, G with probability equal to CR. As illustrated in 
Figure 2, a random number (ran) is generated for each element of the target vector. If ran • 
CR, the element of mutant vector is copied else the target vector element is copied. After 
mutation and cross over operations, the trial vector competes with the target vector for 
selection into the next generation. A greedy criterion based on objective function value is used 
to screen the trial vector. If the trial vector has a better value compared to the target vector, it 
replaces the target vector allowing the best solution into further generations. The process of 
mutation, crossover and selection is repeated until a termination criterion such as maximum 
number of generations is satisfied. The algorithm then terminates providing the best point that 
has been explored over all the generations. The best point is further refined using a fast  
 

Start 

Generate the initial population randomly 

Evaluate the individuals and select the best one 
Set generation = 1 

Mutation

Crossover

Selection

Has the number of 
generations exceeded 

Genmax?

Local optimization using quasi-Newton method 

Stop and print the result 

Generation = 
Generation+1 

Set the parameters F, CR, strategy, 
NP and Genmax 

No 

Yes



 4

 
 

Figure 2: Schematic diagram of crossover operation; for continuous lines ran • CR and for 
dotted lines ran > CR. 

 
 
convergent quasi-Newton method to achieve the best minimum which is declared to be the 
global minimum. 
 
TABU SEARCH 

TS, first developed by Glover (1989, 1990), has been widely used for combinatorial 
optimization (Youssef et al., 2001) but its use is very limited in continuous optimization (Hu, 
1992; Chelouah and Sirarry, 2000; Teh and Rangaiah, 2003; Lin and Miller, 2004a and Lin and 
Miller, 2004b). TS is a meta heuristic that guides the heuristics to escape from the local 
minima. The main concepts of TS include diversification and identifying the most promising 
region. The diversification step performs exhaustive search in the entire solution space by 
generating solutions that are not seen before. To implement this, TS maintains tabu list 
(consisting of unpromising points) and promising list to avoid repeated visits to the same place 
in the search region which in turn improves the computational efficiency. After a specified 
maximum number of iterations, in-depth search known as intensification is performed from the 
most promising point. 

 
The algorithm can be explained using the flowchart in Figure 3. It starts with the 

selection of values for the parameters: tabu list size (Nt), promising list size (Np), tabu and 
promising radii ( t and p), length of the hyper rectangle (hn), population size (NP), number of 
neighbors (Nneigh) and maximum number of iterations (Itermax). The algorithm then randomly 
generates a population of specified size and evaluates the objective function value at each 
individual. The best point is filled into the promising list and the remaining will be sent to the 
tabu list. The best point found is selected as the current centroid (s) of the hyper rectangle, 
which is used to generate neighbors to explore for better points in the neighborhood. The 
generation of neighbors can be executed in many ways, i.e., either by using hyper circles or 
hyper rectangles etc. In this study, hyper rectangles have been used to generate the  
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Figure 3: Flow chart of TS-QN algorithm. 
 

neighbors. A detailed explanation about the generation of neighbors using hyper rectangles is 
available in Teh and Rangaiah (2003). The neighbors are then compared with the points in 
tabu and promising lists, and only those that are different from the latter are evaluated. The 
rejection of the neighbors which are nearer to the points in tabu and promising list improves 
the computational efficiency of TS avoiding repeated visits to the same place during the 
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search. The algorithm selects the best point found in the current iteration as the centroid of the 
hyper rectangle to generate neighbors for the next iteration. The best point in the current 
iteration is accepted even if it is worse than that of the previous iterations to avoid entrapment 
in the local minima. The process of generating neighbors is repeated and the tabu and 
promising lists are updated in each iteration. After a specified number of iterations, most 
promising area is identified and is further investigated by intensification step. Generally, a local 
optimization technique is used in this step; a fast convergent quasi-Newton technique is used 
in this study. The algorithm then terminates by declaring the final solution as the global 
minimum.  
 
IMPLEMENTATION OF DE AND TS 

A Matlab code for DE is taken from the website 
http://www.icsi.berkeley.edu/~storn/code.html and a boundary violation check is implemented 
in the code. For the local minimization step, an in-built subroutine from the Matlab optimization 
tool box namely, FMINCON is used. The objective function for DE code is written in FORTAN 
and simple gateway functions are used to call it from the Matlab. This is adopted as all our 
programs for PS are in FORTRAN. For TS, the FORTRAN code developed by Teh and 
Rangaiah (2003) is used; it uses the IMSL subroutine namely, DBCONF for the local 
minimization step. Both FMINCON and DBCONF employ the fast convergent quasi-Newton 
method with BFGS update for the Hessian matrix. 

 
BENCHMARK PROBLEMS 

Several benchmark problems having 2 to 20 variables and a few to several hundreds 
of local minima are used to evaluate both DE followed by quasi-Newton method (DE-QN) and 
TS followed by quasi-Newton method (TS-QN). A brief description of the functions and the 
global minima are given in Table 1.  

 
Table 1: Details of the benchmark problems 

 

Function Number of variables 
(N) Global minimum Remarks 

Goldstein and Price 
function (GP2) 

2 3 at x = {0, -1} Four local minima 

Easom function (ES2) 2 -1 at x = { ππ, } Several local minima 
Shubert function 

(SH2) 
2 -186.7309 at x = {-

0.8427, -0.1889} 
18 global minima; 760 

local minima 
Hartmann function 

(H3) 
3 -3.86278 at x = 

{0.114614, 0.555649, 
0.852547} 

Four local minima 

Rosenbrock function 
(ROSN) 

2,5,10 and 20 0 at x = {1, …, 1} Several local minima 

Zakharov function 
(ZAKN) 

2,5,10 and 20 0 at x = {0, …, 0} Several local minima 

 
Two types of stopping criteria are used in this study. They are namely, maximum 

number of iterations/generations (Itermax in TS-QN and Genmax in DE-QN) (referred as stopping 
criterion 1 (SC1)) and maximum number of iterations/generations or maximum number of 
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successive iterations/generations (Scmax) without improvement in the best function value 
(referred as stopping criterion 2 (SC2)). Some of the published studies (Cai and Shao, 2002) 
employed convergence to the global minimum as a stopping criterion. On the contrary, we 
used the stopping criteria SC1 and SC2, because in reality, global minimum of application 
problems is unknown a priori. The performance of the two methods is evaluated based on the 
reliability (i.e., number of trials in which global minimum is successfully located out of 100 
trials) and the computational efficiency (i.e., number of function evaluations (NFE) required to 
reach the global minimum). The gradient is calculated numerically and the NFE includes the 
function calls for evaluating both the objective function and the gradient in the quasi-Newton 
method. 

 
Parameter Tuning 

Test functions GP2, ES2, SH2, ROS5, ROS10 and ROS20 have been selected to tune the 
parameters of TS-QN and DE-QN. The parameter values are optimized to find the global 
minimum with good reliability and computational efficiency. The nominal parameter values 
chosen for TS-QN are Nt and Np =10; t and p = 0.01; hn = 0.5; NP = 20N, where N is the 
dimension of the problem; Nneigh = 2N (subject to a minimum of 10 and a maximum of 30); Scmax 
= 5N and Itermax = 50N; and for DE-QN are A = 0.4; CR = 0.1; NP = 50; Scmax = 5N and Genmax = 
50. The nominal values for TS-QN and DE-QN are chosen based on the optimum 

 
Table 2: Optimal parameter values for TS-QN and DE-QN 

 

Parameters Benchmark 
problems 

Phase stability 
problems 

TS-QN 
Nt and Np 10 10 

t and p 0.01 0.02 
NP 20N 20N 

Nneigh 2N 2N 
hn 0.5 0.5 

Itermax 50N min {50N, 100} 
Scmax 6N 2N 

DE-QN 
A 0.5 0.3 

CR 0.5 0.9 
NP 50 min {50N, 100} 

Genmax 60N 50 
Scmax 10N 6N 

 
Note 1: N – Dimension of the problem; Nt and Np – Size of tabu and promising lists; t and p – Tabu and 
promising radii; NP – Population size; Nneigh – Number of neighbors; hn – Length of the hyper rectangle; 
Itermax – Maximum number of iterations; Scmax – Maximum number of successive iterations without 
improvement in the best function value; A – Amplification factor; CR – Crossover constant; Genmax – 
Maximum number of generations. 
 
Note 2: Nneigh is restricted to a minimum of 10 and a maximum of 30 for benchmark, and is restricted to 
20 to 30 for PS problems to have good reliability and computational efficiency. 
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values available in Chelouah and Siarry (2000), and preliminary numerical experience with 
some of the benchmark problems respectively. The tuning is performed by varying one 
parameter at a time while the rest are fixed at their nominal/recent optimum values. The 
optimal parameters obtained for TS-QN and DE-QN are given in Table 2. The optimal 
parameters found for TS-QN are the same as its nominal parameters. This may be because 
the nominal parameters are chosen based on the optimal settings given in Chelouah and 
Siarry (2000).  
 
 
 
Results and Discussion 

The results for solving the benchmark problems by TS-QN and DE-QN are given in the 
Table 3. Each benchmark problem is solved 100 times, each time by generating a random 
initial estimate. The results are compared in terms of success rate (SR) and NFE, which is the 
average of all100 trials. 

 
It is evident from Table 3 that the reliability of DE-QN is better compared to TS-QN 

using both SC1 and SC2. This is perhaps due to the different escaping mechanisms 
associated with these two methods. DE performs mutation and crossover over a set of 
individuals (i.e., population), whereas TS accepts the best point in each iteration as the new 
centroid of the hyper-rectangle for generating neighbors even though it is worse than the 
previous best points in order to escape from the local minima. The reliability of TS-QN is less 
for ES function because the function is flat everywhere in the feasible region except near the 
center (global minimum region). As the function is flat, all the neighbors generated in TS-QN 
will have the same value trapping the search in that region, where as DE-QN explored the  

 
Table 3: Success rate (SR) and Number of Function Evaluations (NFE) using DE-QN 

and TS-QN for benchmark problems 
 

TS-QN DE-QN 
SC1 SC2 SC1 SC2 Function 

SR NFE SR NFE SR NFE SR NFE 
GP2 100 918 99 301 100 6071 100 4711 
ES2 90 1040 85 433 100 6058 75 3935 
SH2 100 1033 92 355 99 6090 100 2260 

ROS2 99 2021 100 475 100 6067 100 2985 
ZAK2 100 1009 100 343 100 6058 100 2470 

H3 100 987 100 386 100 9070 100 5029 
ROS5 76 5275 79 2081 100 15074 100 9368 
ZAK5 100 2629 100 1294 100 15067 100 7668 
ROS10 74 17051 78 8541 100 30085 100 22422 
ZAK10 100 8491 100 8473 100 30081 100 16839 
ROS20 82 44869 75 22074 95 60112 95 60112 
ZAK20 100 19157 100 19157 100 60104 100 38064 
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global minimum region by generating different new individuals by the process of mutation and 
crossover. The reliability of both TS-QN and DE-QN for Shubert function is high even though it 
has 760 local minima. This may be because locating one of the several global minima (around 
18) in this example is sufficient to achieve the best function value. The reliability of TS-QN is 
less for Rosenbrock functions because of narrow global minimum region in these functions.  

 
Even though reliability of DE-QN is more than TS-QN, its computational efficiency is 

less compared to TS-QN (Table 3). NFE for DE-QN is 1.3 (ROS20) to 6.6 times (GP2) more 
than that for TS-QN using SC1 and is 2 to 15 times more than that of TS-QN using SC2 for the 
corresponding functions. This could be because of avoiding repeated visits to the same place 
in TS by keeping track (i.e., by maintaining tabu and promising lists) of the previous search 
points which in turn improves the computational efficiency. NFE for both TS-QN and DE-QN 
increases with the number of variables due the increase in the size of the solution space which 
makes both the algorithms to generate more points.  

 
DE-QN and TS-QN have also been evaluated using SC2. The computational efficiency 

and reliability (Table 3) are better and comparable using SC2 compared to that of SC1 for both 
DE-QN and TS-QN. NFE of DE-QN using SC1 is 1.3 (GP2 function) to 2.4 times (ZAK2 
function) more compared to SC2, and is 2 (ROS10 function) to 4.2 times (ROS2 function) more 
compared to SC2 for TS-QN. This is because the algorithms will terminate if the best function 
value does not change successively even after specified maximum number of 
iterations/generations causing low reliability and good computational efficiency with SC2. 

 

PHASE STABILITY PROBLEMS 
For a given temperature (T), pressure (P) and composition x= (x1, x2, x3, …, xnc), the 

molar Gibbs free energy, g of the system is given as the summation of the product of mole 
fraction and partial molar Gibbs free energy, iG  for all components (Rangaiah, 2001): 

∑
=

=
nc

1i
iiGxg            (2) 

The tangent plane, t at a specified composition x* = (x1

*, x2

*, x3

*, …, xnc

*) is given as: 

∑
=

=
nc

1i

*
iiGxt            (3) 

where superscript * represents evaluation at composition x* and thus the TPDF can be 
expressed as: 

∑
=

−=−=
nc

1i

*
iii )GG(xtgH          (4) 

Depending on the expressions of iG and *
iG , different forms of H exist. If the non-ideality of the 

phase is described by fugacity approach, then the dimensionless H can be expressed as: 

[ ]∑
=

φ−φ=
nc

1i

*
i

*
iiii )xln()xln(xH          (5) 

where iφ  represents the fugacity coefficient of the component i in the given phase. If the 
excess Gibbs free energy approach is used to represent the non-ideality, then the 
dimensionless F can be expressed as: 
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[ ]∑
=

γ−=
nc

1i

*
iL

*
iii )xln()x(lnxH          (6) 

where iLγ  represents the activity coefficient of component i in the liquid phase L. Depending 
upon the approach, the objective function is either equation 5 or 6, and the constraints are: 

∑
=

nc

1i
ix = 1           (7) 

and      0 • xi • 1           (8) 
 

The decision variables are xi for i = 1, 2, …, nc. The constrained problem can be 
reformulated into an unconstrained problem by introducing the variables, i (for i = 1, 2, …, nc-
1) (Teh and Rangaiah, 2002) instead of mole fractions xi (for i = 1, 2,…, nc). To avoid the 
computational difficulties, the lower bounds are taken as 10-15 instead of 0. The examples 
considered include multi-components (2 to 9), different feed conditions and different 
thermodynamic models. Several compositions are considered for each example. The number 
of components, feed composition, temperature and pressure of all these examples can be 
found in Rangaiah (2001) except for example 5 (Table 4). The last local, global minima and the 
composition at the last local minimum for all these cases are given in Table 5. The composition 
at the global minima can be found in Rangaiah (2001) and Table  5.  
 
 
 
 

Table 4: Details of the example 5# of phase stability problem – toluene (1), water (2) and 
aniline (3) at 298 K and 1.0 atm 

 
xi

* Global solution 
Composition Component Liquid 

1 
Liquid 

2 
Objective 

function value X 

1 1 0.29989 - -0.29454012 0.000067 
 2 0.20006 -  0.996865 
 3 0.50005 -  0.003068 
2 1 0.34673 0.00009 0.0 0.346740 
 2 0.07584 0.99495  0.075840 
 3 0.57742 0.00496  0.577420 

    
Note: The above example is a liquid-liquid equilibrium problem and * represents the feed composition.  

# Castillo and Grossmann (1981). 
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Table 5: Global and last local minima for PS problems 
 

Function value Composition 
Global minimum  Last local minimum 

Example 1 (1) 
1 -0.03246624 0 at {0.5; 0.5} 
2 -0.21418620 No local minima 
3 -0.07427426 -6.06283×10-3 at {0.39221; 0.60778} 
4 -0.00671171 0 at {0.65; 0.35} 
5 -0.00070557 0 at {0.93514; 0.06486} 
6 0 1.11127×10-3  at {0.93476; 6.5230×10-2} 

Example 2 (2) 
1 -0.11395074 0 at {0.4; 0.3; 0.3} 
2 -0.05876117 -4.11636×10-6 at {0.61986; 0.00562; 0.37452} 
3 -0.22827470 -2.71678×10-3 at {0.20145; 0.43018; 0.368351} 
4 -0.02700214 -3.09637×10-6 at {0.03001; 0.00211; 0.96788} 
5 0.0 1.323587×10-6 at {0.69280; 0.00399; 0.30321} 

Example 3 (3) 
1 -0.00395983 1.08905×10-2 at {0.11520; 0.88479} 
2 -0.08252179 -5.68944×10-2 at {0.11813; 0.88186} 
3 -0.00246629 0 at {0.112; 0.888} 

Example 4 (4) 
1 -1.48621570 -1.48554 at {0.94672; 4.35930e-2; 7.85484×10-3 ; 

1×10-15; 1.2478×10-3 ; 1.96839×10-4; 2.63986×10-4; 
1.20802×10-4} 

Example 5 
1 -0.29454012 0 at {0.29989; 0.20006; 0.50005} 
2 0 No local minima 

Note: The number in the bracket refers to the example number in Rangaiah (2001). 
  

Parameter Tuning 
Compositions 2, 4 and 5 of Example 2, which are found to be difficult in the preliminary 

trials, are chosen to tune the parameters of TS-QN and DE-QN. For PS examples, a random 
way of generating neighbors from the centroid in TS-QN is also studied along with the 
systematic way (using hyper rectangles) of generating neighbors. This is because, for some 
examples, generation of neighbors using hyper rectangles did not give good reliability, perhaps 
due to the distribution of local and global minima in these examples. As shown in Figure 4a, 
the problem (2nd example, 5th composition) has the local minimum at  = (0.692780, 0.012996) 
and the global minimum at  = (0.278990, 0.682251) with function values 1.323587×10-6 and 0 
respectively. Initially the TS-QN using hyper rectangles to generate neighbors found a best 
point (circle in Figure 4a) in the local minimum region and set it as a new centroid of hyper 
rectangles to generate neighbors. As the local minimum is close to the boundary, the 
distribution of neighbors is not spread to the global minimum region (Figure 4a) (i.e., one side 
of the hyper rectangle becomes the lower boundary of the variables forcing many points near 
the boundary). To circumvent this difficulty, a random way of generating neighbors is 
implemented as shown in Figure 4b to explore better points in the global minimum region for 
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these problems. A mixed (generating half of the total number of neighbors using hyper 
rectangles and the rest randomly) way of generating neighbors is also studied.  

 
(a) 

 
(b)      

                
 

Figure 4: Generation of neighbors for example 2 (composition 5) (a) using hyper- rectangles 
(b) randomly using TS-QN. * represents the neighbor and circle (o) at  = {0.69280, 0.01299} 
represents the best point. 
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 The optimal parameter values obtained for TS-QN and DE-QN are given in Table 2. The 
parameters ( t and p, Scmax and Itermax for TS-QN A, CR, Scmax and Genmax for DE-QN) are 
different compared to benchmark problems because the number of variables (i.e., 
components) in these examples is less compared to the benchmark examples.  

 
Results and Discussion 

All the PS examples are solved 100 times each from a different randomly chosen point 
in the feasible region. Initially the examples are solved with SC1 to study the performance of 
TS-QN with different ways of generating neighbors and the results (averaged over the 100 
trials) of TS-QN and DE-QN are given in Table 6. The results for TS-QN are given for three 
types of generating neighbors: TS-S-QN (systematic using hyper rectangles), TS-R-QN 
(randomly) and TS-M-QN (mixed). 

 
Table6: SR and NFE of DE-QN, TS-S-QN, TS-M-QN and TS-R-QN for phase stability 

problems using SC1 

Composition NFE of 
TS-S-QN 

NFE of 
TS-M-QN 

NFE of 
TS-R-QN 

NFE of 
DE-QN 

Example 1 
1 567 (99%) 360 684 2568 
2 563 330 645 2562 
3 465 361 681 2566 
4 571 332 642 2569 
5 583 324 640 2557 
6 581 325 639 2567 

Example 2 
1 1196 1890 1989 5112 
2 1273 (64%) 1768 2023 5115 
3 1272 1956 2035 5116 
4 1240 (91%) 1810 1987 5111 
5 1277 (84%) 1878 (85%) 1984 (76%) 5114 

Example 3 
1 569 645 757 2584 
2 577 523 759 2582 
3 558 646 758 2582 

Example 4 
1 2100 2203 2767 5143 

Example 5 
1 1306 1095 2048 5120 
2 1280 1026 1981 5108 

 
Note: SR is 100% for all the examples except for some of them for which SR is given in brackets. 

 
The results in Table 6 show that both DE-QN and TS-QN have high reliability in 

locating the global minimum. The reliability of DE-QN is comparable to TS-M-QN and TS-R-
QN, and is better than TS-S-QN. This shows that the systematic way of generating neighbors 
has less reliability for these problems. The SR of TS-M-QN, TS-R-QN and DE-QN are 100% 
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for all the examples except for 2nd example with 5th composition for which TS-QN with all types 
of generating neighbors is low compared to DE-QN. This is because of the presence of 
comparable minima (function value at local and global minima are 1.32358×10-6 and 0 
respectively) in this example. As the function value at the local minimum is close to the global 
minimum, the better region (Figure 5) becomes narrower and narrower causing failure of TS-
QN to locate the global minimum region, where as DE-QN is able to explore the global 
minimum region with its escaping mechanism (mutation and crossover). 

 

 
 
 

Figure 5: Better region (i.e. the global minimum region) with respect to the last local 
minimum for Goldstein and Price (GP) function  

 
The computational efficiency of TS-M-QN is better compared to TS-S-QN and TS-R-

QN. This may be because some neighbors in the mixed type of generation may be close 
enough such that they are near to the points in the tabu list which in turn avoids repeated 
evaluations. Even though DE-QN is more reliable than TS-QN, the latter is computationally 
more efficient than the former. The NFE of DE-QN is around 2.3 times (4th example) to 7.1 
times (1st example, 1st composition) more than TS-M-QN. This is due to avoiding repeated 
visits to the same place by keeping track of the previous points during the search. 

 
The examples are also solved with the SC2 for TS-M-QN (shown to be the best 

among all types) and DE-QN, and the results (Table 7) show that there is no improvement in 
the computational efficiency of TS-QN using SC2 compared to that of SC1. This is because 
the maximum number of iterations is reached before the specified Scmax number of iterations. 
This also shows that the parameter Itermax is fine tuned. The results show that the 
computational efficiency of DE-QN using SC2 is better than that of SC1, and is due to the 
termination of the algorithm once the specified Scmax number of iterations is reached 
irrespective of maximum number of iterations. NFE of DE-QN with SC1 is 1.1 (2nd example, 2nd 
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composition) to 4 times (1st example, 6th composition) more compared to that of SC2.  For 
Example 4, the NFE of DE-QN is same with both SC1 and SC2. This is because here the 
optimum Scmax value (i.e., 6N ≅  48) is high because of more number of variables and the 
number of iterations reaches its maximum number (i.e., Itermax = 50 for these problems) earlier 
than Scmax terminating the algorithm. For Example 5, the NFE of DE-QN for composition 1 is 
higher than that of composition 2 even though optimum Scmax value is the same for both of 
them. This may be because of the different gradients of the corresponding objective functions.  

 
 
 

Table 7: Comparison of SR and NFE of DE-QN and TS-M-QN for phase stability problems 
using SC1 and SC2 

 
TS-M-QN DE-QN Composition 

SC1 SC2 SC1 SC2 
Example 1 

1 360 360 2568 755 
2 330 330 2562 779 
3 361 361 2566 869 
4 332 332 2569 727 
5 324 324 2557 647 
6 325 325 2567 643 

Example 2 
1 1890 1890 5112 3808(99%) 

2 1768 1768 5115 4624(96%) 

3 1956 1956 5116 4824 
4 1810 1810 5111 4024 
5 1878 (85%) 1878 (85%) 5114 3642(99%) 

Example 3 
1 645 645 2584 716 
2 523 523 2582 764 
3 646 646 2582 698 

Example 4 
1 2203 2203 5143 5143 

Example 5 
1 982 982 5120 5018 
2 910 910 5108 3566 

 
Note: SR is 100% for all the examples except for some of them for which SR is given in brackets. 
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CONCLUSIONS    
Two most promising methods, namely, DE and TS have been implemented along with a 

local minimization method (QN) at the end to refine the solution, and evaluated for benchmark 
and PS problems. Initially both DE-QN and TS-QN are tested on benchmark problems 
comprising of 2 to 20 variables and a few to hundreds of local minima. The methods are then 
tested for PS problems involving multi components. The generation of neighbors in TS is 
implemented in different ways i.e., using hyper rectangles, mixed and random way of 
generation, to study the performance of TS-QN. The results show that the methods 
successfully located the global minima with DE-QN being more reliable compared to TS-QN 
and the latter being computationally more efficient than the former for both benchmark and PS 
problems. The above all results show that the process of mutation and crossover in DE-QN is 
more reliable than the escaping mechanism of TS-QN. They also show that TS-QN is 
computationally more efficient than DE-QN, perhaps due to avoiding revisits to the same place 
during the search.  
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OMENCLATURE 
 
A Amplification factor 
CR Crossover constant 
F Total moles of feed 
G  Partial molar Gibbs free energy 
H Dimensionless tangent plane distance function 
h Length of the hyper rectangle 
nc Number of components 
NP Population size 
P System pressure 
s Centroid of the hyper rectangle 
T System temperature 
t Tangent plane 
U Trial vector 
V Mutated vector 
X Target vector 
x Mole fraction of the given phase 
 
 
 

 

Greek letters  
iγ  Activity coefficient of component i 

iφ  Fugacity coefficient of component i 

iβ   ith component of the decision variable  
 Radius  

 
 

 
 
 

Subscripts  
G Generation 
t Tabu point 
P Promising point 
neigh Neighbor point 
max Maximum number 
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