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ABSTRACT 
 

The urgent current necessities in modern agriculture has afforded in a growing application of 
computer science and electronics to this field. Precision and sustainable agriculture, involve not only 
new production methods, but also complex systems that integrates biological, technological and 
economical factors in a flexible environment, to cope with the uncertainty of nature. This form of 
agriculture aims to optimise proficiency and environmental protection, by assessing together 
forecasts for risk, damage and profit. One aspect to consider in order to reach that purpose, is the 
availability of good irrigation systems (Walker, 2002). Improving water efficiency in irrigated 
agriculture is a priority for better environmental and economic performance reducing the required 
amount of water and optimising the timing of application (Howell, 2001). Among numerous 
methods, hybrid biophysical/decisional simulation models are effective tools for strategies under 
different weather conditions. Nevertheless, optimising irrigation strategies for some specified agro-
environmental expected criteria represents a computationally hard problem. 

 
In this paper we propose a new approach for optimising the parameters of seed-fruit irrigation 

strategies, represented by a simulation-optimisation partitioning method, SOP-kP, which is designed 
to completely explore by sampling the domain of the strategy parameters. This exploration is based 
on a hierarchical decomposition of the domain that heuristically guides the search toward optimal 
zones, allowing considering high dimensional optimisation problems. Firstly, we evaluate a irrigation 
strategy by comparison with a systematic grid search on a simple two-parameter problem in cultivars 
areas located at North-Patagonian region -Southern Argentine- in order to optimise the expectation 
of the seed-fruit gain margin, and using 20 years of weather records as input data. The similar results 
confirm the sound behaviour of the partitioning method. Then, we apply our approach to a more 
complex optimisation problem that involves an eight-parameter strategy, for which the systematic 
grid search method is not effective. The best solution-strategy we obtain shows 2527.43 U$S ha-1 
increase in the gain margin compared to a current strategy. A numerical model for simulation of 
infiltration and groundwater flow in a different porous media with variable saturation level is also 
incorporated. The different optimal parameters obtained for each context are in good agreement with 
the expert knowledge of irrigation advisors. Finally, we conclude discussing some limitations and 
possible improvements of the presented work. 
 
1. INTRODUCTION 
 

Modern agriculture has afforded in a growing application of computer science and electronics 
in order to reach precision and sustainability in its practice. This activity is an important consumer of 
water and irrigation, and consequent, essential in some areas to allow acceptable seed-fruit yield and 
quality. Improved water use efficiency in irrigated agriculture is therefore a priority for better 



environmental and economic performance (Howell, 2001). Irrigation is necessary because of the 
non-uniform distribution of rainfall, the very limited water-holding capacities of typical sandy soils, 
and the extreme sensitivity of many specialty crops to water stress. These factors and the economic 
losses from under -or-over-irrigation require that irrigations be scheduled as efficiently as possible. 

 
Throughout the irrigated world, water is applied to fields unevenly and excessively, leading 

to wastage and to pollution of surface and ground-waters. Computer solution of the governing 
equations with given irrigation conditions allows rapid evaluation of physical layout and operation. 
Systematic, repeated simulation can lead to design parameters yielding optimum uniformity of 
infiltrated water and minimum deep percolation and runoff from the end of the field. Concerning 
seed-fruit crops in North-Patagonian region, southern Argentine, regardless the physiological stage 
of crop and soil water deficit, farms are flooded responding to the implicit irrigation calendar (see 
Figure 1), based on rotating farmers’ rounds. This practices address to soils lixiviation and its 
consequent nutrient content loss. Thus, irrigation scheduling has been an important topic in 
agricultural research for several decades and continues to be so today. There is a vast amount of 
literature on irrigation scheduling methods (Botes et al., 1996; Bergez et al., 2002). Biophysical 
models linked with decisional models can be a helpful tool to solve irrigation scheduling problems. 
They constitute and important aid in understanding complex systems and help problem solvers to 
capture and reason about the essential features and dynamics of such systems (Keppens, 2001). 

 

 
 
Figure 1: Description of the current strategy applied in some seed-fruit cultivar areas located Noth-

Patagonian region (AR). 
 

Current models of surface irrigation are insufficiently flexible to allow theoretical study of 
innovative irrigation techniques, and not always able to complete a simulation. Most of them are 
limited to single furrows, or border-strips with zero cross-slope and a uniformly distributed inflow at 
the upstream end. But large basins are currently being irrigated from a single inlet. The flow spreads 
out in all possible directions, and any one-dimensional simulation of the distribution of infiltrated 
water must be viewed as a very coarse approximation. Also, departures in a basin surface from a 
theoretical plane influence the flow; with the irrigation stream concentrated in the lower-lying areas, 
this can significantly affect infiltration uniformity. Only a two-dimensional model can simulate these 
factors with any accuracy. While a one-dimensional approach is suitable for furrows, in real 
situations flows in neighbouring furrows of a set are often coupled through common head and tail-
water ditches. In some cases, the tail-water from a fast furrow will enter a slower furrow from its tail 
end and modify its ultimate infiltration profile. To fully appreciate the effects of such coupling, 
simulation of interconnected multiple furrows is necessary. On the other hand, developing tools by 
integrating knowledge in models may be of some help for planners. However, modelling water 
management is complex because it concerns different scales (scale of decision; scale of action; scale 
of policy; scale of management) and different actors (water users including farmers, factory 
managers and general public, policy makers and water manager). Crop models which simulate the 



dynamic of plant growth and water demand of one of several crops can provide quantitative 
contributions to the environmental impact assessment and be very useful for water management 
(Bergez et al., 2002). However they do not explicitly represent farmers’ decision. 

 
The objective of current development is to provide a new approach for optimising the 

parameters of seed-fruit irrigation strategies, represented by a simulation-optimisation partitioning 
method, SOP-kP, and validated simulation models capable of providing quick results for a wide 
variety of test combinations of design and management parameters.  

 
One of the keys to improving agricultural water management is therefore to better understand 

the way farmers manage their irrigation and to model it (Cox, 1996; Bergez, 2002). Decisional 
models have to be based on decision rules in order to integrate how farmers adapt management to 
context. For the farmers, combining a decision model with a crop model makes it possible to 
calculate the best strategy that optimises water consumption and maximises revenue. For the planner, 
such models can be used to mimic farmer strategy (optimal or not) in order to anticipate water 
demand. Thus, irrigation strategies can be represented as sets of decision rules with lots of 
parameters (thresholds, quantities, dates, etc.). The design of innovative strategies that perform well 
for some specified agro-environmental criteria thus leads to large optimisation problems. Thus, we 
propose a new simulation-based optimisation approach that handles this difficulty using a generative 
partitioning clustering algorithm called SOP-kP. 

 
In the first part of this work, we introduce the  irrigation model and sub-models associated. In 

a second part, the solution procedures are illustrated. Then, model validation and testing is presented. 
Finally, results, conclusions and further researches are discussed. 
 
2 MODELLING SEED-FRUIT IRRIGATION SYSTEMS  
 

Modelling the whole system comprises  complex relationships among different sectors and 
factors. We could think our system just like a complex hierarchical model. Each sub-system has a 
series of variables that could be treated considering Principal Components Analysis (PCA), sub-
systems variables could be related to each other by means of Multiple Correspondence Analysis 
(MCA) and, systems and sub-systems should be analysed using Hierarchical Ascendant Clustering 
(HAC)), before to start to modelling tasks . Furthermore, the differential equations describing the 
biological process were discretised using a Global Hybrid Mixed Finite Element method (GHMFE) 
proposed by authors. All this results can not be included in this paper, since it represents a complete 
work itself. However, we present some structural description about the origin of the involved 
variables and their incorporation in a ‘grey box’ model. This analysis was carried out using 
MATLAB tools.  

 
Biological simulation models, underlying bioeconomic models, vary considerably in their 

complexity and depend critically on the purpose for which they are constructed. An agricultural 
model representing pip fruit orchards is a particularly useful means of evaluating the effects on yield 
and profitability.  
 

In order to obtain a rigurous model an infiltration, groundwater flow and nutrient uptake in 
variably-saturated porous media are developed. A numerical model for their simulation is presented. 
The algorithm consists in a discretisation of Richards’ equation that combines a temporal 
linearisation using a Picard iteration with spatial approximation employing a hybridised mixed finite 
element procedure. The method is computationally efficient and mass conservative. Some relevant 
features of the associated algebraic problem and a numerical example of infiltration in North-
Patagonian (AR) region are also included. The uptake of a single nutrient for root of crops is studied 



through a moving boundary model, which differ of previous models solving the problem in fixed 
domains, and then discretised via finite elements too.  
 
 
2.1 MODEL DATA SETS 
 

We faced management of the water resources for agricultural activities in North-Patagonian 
region. The rivers Neuquén and Limay converge forming the Black river. The river’s water supply is 
utilised for irrigation, municipal, hydropower, industry, mining, recreation and environmental 
purposes. Its operation is governed by the Basins Inter-jurisdictional Authority (In Spanish: 
Autoridad Interjurisdiccional de Cuencas: AIC) which generally includes an inter-jurisdictional 
treaties, interstate legislation, etc.  
 

Although the current state of the art does not allow accurate long range prediction of the 
climatic extremes  in this region, stochastic hydrologic modelling can help managers get a better 
understanding and appreciation of the types of climate conditions they may face in the future and 
update scheduling irrigation systems. Operational studies of the North-Patagonian region require the 
consideration of statistical variability of the stream flow data. For this purpose, a number of 
techniques have been suggested and used in the past ranging from empirical procedures based on the 
historical record alone and the so called index sequential algorithm, introducing a stochastic 
simulation-optimisation partitioning method, SOP-kP, to refined techniques based on stochastic 
methods.  

 
For this analysis, we began with 20 years of historically observed monthly data at 23 sites in 

the basin. This number of differ ent sites has been taken considering that furrow layout varied 
considerably between field sites. The data have been naturalised in order to remove the effect of 
regulation or diversions. Then the 23 site system was partitioned into a system comprised of key 
steps, sub-steps and subsequent steps. Some infiltration characteristics for the irrigation events were 
estimated using the volume balance optimisation method from advance data and also with small area 
site infiltration tests on the high water-table site. Single site and multi-site models and aggregation 
and disaggregation techniques were utilised in order to determine stochastic daily stream flows at all 
sites. Like the original record, the stochastic traces were 20 years in length. 
 
 
2.2 MODEL IDENTIFICATION 
 

The basic state-space models are the following ones: 
 
Discrete-Time Innovations Form: 
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( ) ( ) ( ) ( )
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where T is the sampling interval, ( )kTu  is the input at time instant kT , and ( )kTy  is the output at 
time kT . (Ljung ,1999). 
 
System Dynamics Expressed in Continuous Time:  
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We define a parameterised state-space model in continuous time due to physical laws are 

described in terms of differential equations. The matrices F, G, H, and D contain elements with 
physical significance. The numerical values of these are not be known. To estimate unknown 
parameters based on sampled data (assuming T is the sampling interval) we first transform (1) to (2) 
using the formulas 

FTeA =  ∫=
T

F GdeB
0

ττ   HC =                    (3) 

 
The value of the Kalman gain matrix K in (1) or  in (2) depends on the assumed character of 

the additive noises  and  in  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tetDutCxty
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++=

++=+1
                     (4) 

 
and its continuous -time counterpart, where ( )tw  and ( )te  are stochastic processes with certain 
covariance properties. This gives the directly parametrised innovations form. (Ljung, 1999). Taking 
into account the internal noise structure is important, we define a grey-box structure using the 
discretised physical laws contained in the infiltration and nutrient uptake models. 
 
 
2.3 BIOPHYSICAL MODEL 
 
2.3.1 INFILTRATION AND GROUNDWATER MODEL 
 

Prediction of water movement in variably-saturated porous media is an important problem in 
many branches of science and engineering. The water motion is assumed to obey Richards’ equation. 
This equation may be written in terms of pressure head (p-based form) or water content (w-based 
form) as the dependent variable. Only the p-based form of the equation can be used for simulating 
water flow in soils with saturated regions, but unfortunately these models are inherently non-mass 
conserving. A greatly improved of the performance of p-based models can be made by using an 
appropiate temporal discretisation of a mixed form of Richards’ equation. The approximations that 
are usually applied to the spatial domain are finite differences and finite element standard methods. 
In this work we use a numerical model to solve the mixed form of Richards’ equation based on a 
global hybridised mixed finite element procedure. The algorithm produces perfectly mass 
conservative numerical solutions and it is computationally efficient. 
 

We will consider the numerical simulation of underground water flow in a porous media 
domain ( )1,0=Θ i , pi ,,1 K= , with boundary TB

i Μ∪Μ=Θ∂ , where { }1==Μ i
T z , pi ,,1 K= , 

pT ℜ→Μ : . It will be assumed that water flow obeys the Richards’ equation stated in the form: 
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where w and p are water content and pressure head, respectively; iK is the hydraulic conductivity, 
which is assumed independent of π  for saturated soils but varies strongly with π  in unsaturated 
soils; iz  denotes the spatial dimensions; and t  is time. 
 

Equation (5.i) states conservation of mass for the water phase and (5.ii) defines the water flux 
f
r

 in terms of Darcy’s law. Equations (5) are valid under the following assumptions: the porous 
media is undeformable; the water density remains constant; and the air mobility is much greater than 
the water mobility so that the air remains at essentially atmospheric pressure.  We will consider 
solving (5) with the following boundary conditions: 
 
B.C.1: ( )tfvf in=⋅ vr

 on TΜ                                                                                    (6)                                                    
 
B.C.2: ( )tfvf out=⋅ vr

 on BΜ  
 

The function ( )tf in  represents the rainfall data, while the term ( )tf out  is used to represent the 
effect of the regional flow. 
 

To solve the differential problem (5)-(6) we also need additional relations between the 
dependent variables ω  and π . We will use the following water retention and hydraulic conductivity 
models proposed by van Genutchen (Guarracino and Santos, 1997): 
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where nm 11 −= ; rω  and sω  are the residual and saturated water contents, respectively; 

( )isisi zKK ,, =  is the saturated hydraulic conductivity; α  and n  are model parameters related to soil 
properties. 
 
 
2.3.2 NUTRIENT UPTAKE MODEL 
 

The nutrient uptake could be estimated through soil transport models coupled with absorption 
kinetics Michaelis-Menten-like on the root surface. The equations involved could be solved over 
fixed domains. The objective of this work consists in estimate the nutrient uptake considering 
rizospheric variable domains –variable root density- implementing a moving boundary model. 
 

Now, we will consider the numerical simulation of the nutrient uptake flow in a porous media 
domain ( )1,0=Θ i , pi ,,1 K= , with boundary TB

i Μ∪Μ=Θ∂ , where { }1==Μ i
T z , pi ,,1 K= , 

pT ℜ→Μ : . The main differential equations can be stated in the form: 
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where ξ  is the nutrient concentration; r  is the radial distance from the root axis; t  is time; T  is the 
maximum time which the equations have solution for; ( )ts  represents the moving boundary; thξ is 
the threshold concentration under which the absorption is nule; v

r
 is the mean effective velocity of 

soil-solution over the root surface; b  is the buffer potential related to a given nutrient; maxJ  is the 
maximum influx of nutrient; maxmax KJk = , where maxK  is the Michaelis constant, represents the 
root absorption potential; R  is the rizospheric radium; ϕ  is the initial profile concentration; iD  is a 
diffusivity coefficient in the direction i ; c  is a dimensionless stoicheometric coefficient; and 0s is 
the initial radium. 
 

These equations can be re-written introduc ing the nutrient flux vector ( )( )tsf
r

 as follows: 
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Then 
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ii) ( )( ) ( )( ) ( )( )( )ttsvttsDtsf i ,, ξξ ⋅+∇=

rr
    iiz Θ∈  

 
 
 

Equation (9.i) represents the mass and diffusive nutrient transport, (9.ii) show a mass balance 
over the root where the ions are incorporated considering a kinetic Michaelis-Menten type. Equations 
(9) are valid under the assumptions taken for the infiltration model. We will consider solving (9) 
with the following boundary conditions: 
 
B.C.1: ( ) ( )ii zz +=+ γϕγξ 0,         iii Zzz ≤≤0,     Tt <<0       iiz Θ∈      on TΜ                (10) 

 
 



B.C.2: ( )( ) ( ) ( )( ) 0,, 00 =−++−+∇− tzZtstvtzZtsD iii

rrr ξξ        iiz Θ∈      on BΜ  
 
 
while (10.i) is the initia l profile concentration, and (10.ii) is the border condition considering a nule 
flux (it can be enter water but no nutrient). This equation also represents a moving boundary of 
constant thick. Furthermore 
 

( ) ktests 0=         iiz Θ∈  
 
representing a growth radial law. For fixed soil volumes, the root length ( )tl  is linked with the root 
radium by means of the expresion: 
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being 0l  the initial root length. 
 

Thus, to solve the differential problem (9)-(10) we also need additional relations between the 
dependent variables ξ  and γ . We will use the following water retention and hydraulic conductivity 
models proposed by van Genutchen: 
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where nm 11 −= ; rξ  and sξ  are the residual and saturated water contents, respectively; 

( )isisi zDD ,, =  is the saturated hydraulic conductivity; α  and n  are model parameters related to soil 
properties. 
 
 
2.4 MODEL CONSTRAINTS 
 

The irrigation model is subject to the following constraints: 
 
Hydrology model: 
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Production model: 
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Biophysical model: 
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where lrq ccc ,,  are cost functions, γξπω ,,, are the biophysical model variables, and eb represent an 
ecological index related to climate t’j and using the strategy vj. The efficiency under climate t’j and 
using the strategy vj could be defined in several ways; we chose an efficiency given by  
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where cj represents a production activity coefficient, Yd(vj , t’j) is the seed-fruit yield obtained 
under climate t’j and using the strategy vj , and Q(vj , t’j) is the amount of water used under climate 
t’j and using the strategy vj. It can be observed that if this coefficient take the value one, a direct 
relation between yield and water applied under climate t’j and using the strategy vj is expected. 
 
 
2.5 BIOECONOMIC MODEL 
 

The objective function to be maximised is the expectation of the direct margin (i.e., the gross 
margin minus specific costs for a given activity, here irrigation) over all the years of weather 
recording. The direct margin regarding irrigation may be written as: 
 

( ) ( ) ( ) ( ) ]',',[',',: πτϖτϖτϖτϖ ⋅+⋅+−⋅=→ jjjjjjjj tcQCpPcYdZOF               (18) 
 
The whole bioeconomic model consists in maximising objective function (18) subject to model 
equations (1) - (11), (17) and model constraints (12) – (16). 
 
where Z(vj, t’j) is the direct margin for climate t’j and using the strategy vj, that is, the total revenue 
for climate t’j and using the strategy vj , ZT, minus the base revenue using the current strategy, Z0. 
 

( ) ( ) ( )00 ',',', τϖτϖτϖ CSjjTjj ZZZ −=                         (19) 
 
Yd(vj , t’j) is the seed-fruit yield obtained under climate t’j and using the strategy vj, Pc is the 
selling price for seed-fruit, Cp is the operational cost for seed-fruit production, Q(vj , t’j) is the 
amount of water used under climate t’j and using the strategy vj, c is the cost of irrigation water, 



t(vj , t’j) the number of irrigation cycles performed and p is the cost of carrying out a new irrigation 
cycle. 
 
 
3. SOLUTION METHODS 
 
3.1 GLOBAL HYBRIDISED MIXED FINITE ELEMENTS PROCEDURE 
 

We solved the biophysical model described in section 2.3 in a rigurous way by means of a 
global hybrid mixed finite element procedure. A temporal discretisation of the physical laws 
equations using a backward Euler method coupled with a Picard iteration scheme was done. Then we 
defined a spatial approximation using a global hybridised mixed finite element procedure. It can be 
demostrated that the problem obtained has a unique solution. Thus, we solved the algebraic 
associated problem using Lagrange multipliers. 
 
3.2 OPTIMISATION PROCEDURES 
 

It is generally acknowledged that there are two main families of clustering (unsupervised 
classification) methods: hierarchical and partitioning. The former ones create a tree structure splitting 
(reuniting) the initial set of objects in smaller and smaller subsets, all the way to singletons (and 
reverse), while the latter ones construct a partition of the initial set of objects into a certain number of 
classes, with the target number usually part of the input, along with the objects themselves. Most 
partitioning methods proposed for data mining can be divided into: discriminative (or similarity-
based) approaches and generative (or model-based) approaches. In similarity-based approaches, one 
optimises an objective function involving the pair-wise data similarities, aiming to maximise the 
average similarities within clusters and minimise the average similarities between clusters. A 
fundamentally different approach is the model based approach which attempts to optimise the fit 
(global likelihood optimisation) between the data and some mathematical model, and most 
researchers do not consider them as clustering methods. Similarity-based partitioning clustering is 
also closely related to a number of operations research problems such as facility location problems, 
which minimise some empirical loss function (performance measure). There are no efficient exact 
solutions known to any of these problems for general number of clusters m, and some formulations 
are NP-hard. Given the difficulty of exact solving, it is natural to consider approximation, either 
through polynomial-time approximation algorithms, which provide guarantees on the quality of their 
results, or heuristics, which make no guarantees.  
 

Thus, our work develops a Generative Partitioning Clustering (GPC) method. The irrigation 
management strategies can be defined as a stochastic optimisation problem, such as 
 
Find  ( )( ){ }',maxarg τφφ ZΕ=∗  with H∈η                  (20) 
 
subject to irrigation model and model constraints, and where H is the value domain of f, and E(Z) is 
the expected value of the gain margin Z, that depends on the irrigation strategy f and on some 
random exogenous variable t’ like the weather. This problem has been faced by means of two 
different optimisation approaches: control and simulation statements. 
 
3.2.1 CONTROL STATEMENTS 
 

At first, we considered optimisation of just a single decision rule that determines the start of 
an irrigation campaign. We compare stochastic dynamic programming and reinforcement learning 
methods for identifying the optimal decision rules. For both optimisation methods the consequences 



of a strategy were calculated using the biophysical model, coupled with a stochastic weather 
generator.  

 
Optimal decision rules were derived using two different procedures. The first relies on a 

discretisation of the domains d and t of the state variables Ð and T, where d and t are the two state-
variables, being d the soil water deficit, and t the accumulated thermal units, and the range of d and t 
are the intervals Ð and T, respectively.. The discrete transition probabilities are then estimated by 
simulation, and an approximated numerical solution of the optimal solution is obtained by dynamic 
programming (Kennedy, 1986) reinforcement learning, which does not require an a priori estimation 
of the transition probabilities.  
 
3.2.2 SIMULATION STATEMENTS 
 

A more flexible and realistic formulation of the optimisation problem consists of searching 
by means of simulation for the best values for the parameters of a predefined irrigation strategy. In 
this case, the simulation model is considered as a black box function where the vector of strategy 
parameters v = (v1, v2, º, vq) is taken as the input variable and where the output is the objective 
function Z. In most of the simulation models of agricultural production systems, the objective 
function Z also depends on the weather, which has to be considered as an unknown and 
uncontrollable random variable t’. Optimising a strategy thus consists of searching for the set of 
parameters v* that maximises the expected value of the objective function according to the random 
weather series: 
 
Find ( )( ){ }',maxarg τϖϖ ZΕ=∗  with  G∈ϖ                  (21) 
 
subject to irrigation model and model constraints, and where G is the value domain of v, and using 
the criterion E(Z(v)) for estimation by averaging the objective function Z(v, t’) over a large 
number of sampled variables t’j: 
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Several efficient methods (stochastic approximation, random search, stochastic branch-and-

bound, etc.) have been recently developed for solving this stochastic simulation optimisation 
problem, which is one of the most difficult problems of mathematical programming (Azadivar, 1999; 
Fu, 2001; Sutton and Baro, 1998). Stochastic iterative methods for deterministic optimisation 
problems like genetic algorithms, simulated annealing or tabu-search have also been adapted for the 
stochastic environment associated with simulation.  
 

We develop a new method for stochastic simulation optimisation problems (SOP-kP) with 
continuous variable space G Œ Rk, where we assume that parameters t’j are bound-constrained, 
which means that the domain G is a hyper-cube on Rk. This algorithm is designed to completely 
explore (by sampling) the domain G, in order to find local and global optimal values for v Œ G. for 
small values of k, the simplest method for such problems is a systematic grid-search (SGS), which 
consists of estimating the objective function on all points located on finer and finer grids over G, 
until a maximum precision is reached for each variable. For large dimension problems (k > 2) this 
method is not efficient since the number of grid points grows exponentially with k. A more useful 
approach is therefore to prioritise the evaluation of points v within promising cells of G that are 
supposed to contain optimal solutions. Its main advantage is to maximise, for a given budget of time 
or simulation runs, the chance of finding a good solution. 



 
Therefore, SOP-kP is used to optimise the set of the eight parameters using weather records 

of North-Patagonian region in Southern Argentine from 1984 until 2004.  
 

 
4 MODEL VALIDATION AND TESTING 
 

Once stated, the model must be validated using a portion of field data. The analysis was carry 
out in MATLAB environment. Figure 2 shows a comparison between simulated model and field data 
sets. The fit percentage parameter is 99.91 %; a fitting quite satisfactory.  
 

 
 

Figure 2: Comparison between simulated model (blue) and field data (green).  
Satisfactory agreement is achieved. 

 
To demonstrate the usefulness of the developed algorithm we will simulate a basic strategy 

(BS). Then, a comparison between the systematic grid-search method (SGS) and the SOP-kP 
algorithm will be carried out on two parameters on the BS: the soil water deficit (d) and the time 
(expressed as accumulated thermal units) to start the main irrigation campaign (l). Water applied per 
cycle is defined as a. Thus we have ls (accumulated thermal unit to start the irrigation campaign), ds 
(soil water deficit to start the irrigation), as (irrigation applied at the first irrigation), dn (soil water 
deficit to start new irrigation cycle), ad (irrigation depth applied after the first irrigation round), lp 
(accumulate thermal unit to stop the irrigation), dp (soil water deficit to stop the irrigation), ap 
(irrigation applied at the last irrigation round). 
 
 
4. RESULTS 
 

Table 1 gives the ranges of the eight parameters that lead to the maximum expectation of the 
objective function. Irrigation has to start at 426 °C days and a 61 mm soil water deficit. The amount 
applied is then 59 mm. The next irrigation is due when the soil water deficit reaches 73 mm; 52 mm 
of irrigation water is then applied. Finally, the last irrigation cycle is performed if at 1307 °C day the 
soil water deficit is more than 116 mm; 59 mm of water irrigation is then applied. 
 
 
 
 

Fit par. 99.91 % 



Table 1: Eight-parameters values that maximise the gain margin. L.R.: Lower Range, U.R.: Upper 
Range. 

 
 ls lp ds dn dp as an ap 

L.R. 426 °C day  1307 °C day  61 mm 73 mm 116 mm 59 mm 52 mm 59 mm 
U.R. 467 °C day 1366 °C day 73 mm 82 mm 134 mm 71 mm 59 mm 71 mm 

 
The simulation of this strategy leads to a seed-fruit yield of 7.49 Tons ha-1, and the margin is 

4866.79 U$S ha-1. Water  used 138 mm.  
 
Table 2 shows the results corresponding to different strategies and parameters utilised in our 

analysis. It comprises mean and variance data in order to get a useful comparison among them. The 
average selling price for seed-fruit is assumed to be 697.08 U$S Tons-1. The seasonal operational 
costs (seed or plant-tree, weeding, fertiliser, insurance) are assumed to be 253.81 U$S ha-1. The cost 
of irrigation water is assumed to be 0.59 U$S mm-1 and setting up a new irrigation cycle 6.37 U$S. 
 
Table 2. Results from the simulation comparing different strategies. CS: current strategy, BS: basic 
strategy, 2-SGS: systematic grid-search with two parameters, SOP-2P/SOP-8P: simulation 
optimisation partitioning method for two and eight parameters, respectively. 
 

(vj , t’j) (m, s2) Yd(vj , t’j) 
[Tons ha-1] 

Q(vj , t’j) 
[mm] 

t(vj , t’j) 
[mm] 

Z(vj, t’j) 
[U$S ha-1] 

hj 
[Tons ha-1 mm-1] 

m 3.89 190 1 2339.36    0.020 CS s2 0.06 2.19 0 2.31 0.002 
m 5.59 174 2 3527.47    0.032 BS s2 0.09 1.46 0.01 3.01 0.002 
m 6.60 162 3 4232.23    0.041 2-SGS 

s2 0.08 2.07 0.02 3.28 0.002 
m 6.67 153 3 4286.33    0.044 SOP-2P s2 0.06 2.08 0.02 3.47 0.002 
m 7.49 138 3 4866.79    0.054 SOP-8P s2 0.09 1.75 0.02 3.25 0.002 

 
As we can see, the highest gain margin is obtained with SOP-kP using eight parameters. In 

the Figure 3 a scheduling scheme is presented, showing duration and intensity of the irrigation. 
 

 
 

 
 

Figure 3: Monthly scheduling comparing different strategies. 
 
 



Figure 4 allows a useful visualisation of the eight-parameter strategy. Intermediate cut planes 
covering the range of the eight-parameters that maximise the expectation of the objective function 
calculated with SOP-kP are illustrated. Note that this time-parameterised figures correspond to a 
three-dimensional graphic where the intersections between planes and surfaces give the moment in 
which water should be applied. 

 
 

 
Figure 4: Cut planes covering the range of the eight-parameters maximising the expectation of the 
objective function calculated with SOP-kP. A: lower values, B-C: middle values, D: upper values. 

 
 
 

6 DISCUSSION AND FURTHER RESEARCH 
 

The system was characterised as a ‘grey-box’ model, getting the opportunity to specify 
biophysical parameters in a practical way exploring the underlying behaviour of the biophysical 
systems (Cox, 1996). Thus, possible uses of the model through simulation are to explore: 

 
- the effect of the soil physical properties on soil water dynamics; 
- crop growth response to different climatic conditions; 
- crop growth response to different irrigation strategies; 
- the effect that root depth has on the soil water dynamics; 



- how different factors influence the amount of water infiltrating below the root horizon, so affecting 
leaching of nutrients or the rise of the water table; 
- sustainable irrigation and cropping strategies to reduce run-off and through drainage. 

 
Comparing different strategies, we can observe that the use of SOP-kP to parameterise the 

decision rules improved the direct gain margin. From the average 2339.36 U$S ha-1 obtained with 
the current strategy, we reach 4866.79 U$S ha-1 using SOP-8P.  

 
Factors considering by the development of this work was  the bio-physical model used to 

describe the system behaviour, the decisional model and the variables used to trigger the decision, 
soil and weather and, constraints. Taking into account that, by definition, a model is an imperfect 
representation of reality (Whisler et al., 1986; Boote et al., 1996) is quite important that the bio-
physical model be both robust and sensitive. On the other hand, it is necessary to describe the 
parameterised strategy as a set of decision rules in order to use SOP-kP, leading to an 
interdisciplinary work among different sectors, such as farmers’ cooperatives, irrigation advisors, 
pertinent authorities, etc . In this paper, this algorithm was used to calculate optimal strategies for the 
direct gain margin criterion, but it also be utilised as an improvement tool, re-optimising each set of 
parameters. 

 
Considering that a number of assumptions made by the model were not always  met in the 

field, the results indicate that in most cases the model simulates irrigation events reasonably well on 
such irrigated systems. This provides evidence that the model can be used with confidence as a 
robust predictive tool for investigating system parameter interactions and their effects on application 
efficiencies and water distribution uniformities.  
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