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Abstract 
This paper proposes three new variants of genetic algorithm to solve deterministic and 
stochastic optimization problems. In these algorithms, a new and efficient sampling 
technique, Hammersley sequence sampling (HSS), is utilized in the initial population 
generation and population updating. Additionally for stochastic optimization problems, 
HSS is also used for propagation of parametric uncertainties through the model. The 
better uniformity properties of HSS are exploited in developing the efficient genetic 
algorithm (EGA) to solve deterministic optimization problems. A case study has been 
performed in this work to show that EGA has better performance than its traditional 
counterpart, in which the random number generator from Monte Carlo sampling is 
commonly employed. For stochastic optimization problems, the Hammersley stochastic 
genetic algorithm (HSGA) coupled with better confidence interval of the samples has 
been introduced. Case studies show that the new algorithm outperforms: 1) the stochastic 
genetic algorithm (SGA) which employs Monte Carlo sampling, and 2) the efficient 
stochastic genetic algorithm (ESGA), where HSS is used together with Monte Carlo 
confidence intervals. This is due to the uniformity and faster convergence properties of 
Hammersley sequence sampling utilized in HSGA. The exercise demonstrates that 
HSGA has the best performance while SGA displays the worst performance. The second 
part in this series of papers describes two solvent selection models, and solvent selection 
with and without uncertainty is solved using the new algorithms. 
Keywords: Hammersley Sequence Sampling, Efficient Genetic Algorithm, Stochastic 
Genetic algorithm, Hammersley Stochastic Genetic Algorithm. 
 
1. Introduction 
Many optimization problems, which include a large number of continuous or discrete 
design variables fall into the category of integer programming (IP) and mixed integer 
nonlinear programming (MINLP). Branch and bound (BB), generalized bender’s 
decomposition (GBD), and outer-approximation (OA) (Diwekar, 2003) are generally 
used for solving IP and MINLP problems. However, problems occur when: 1) functions 
do not satisfy convexity conditions, 2) systems have large combinatorial explosion, or 3) 
the solution space is discontinuous. One probabilistic optimization technique named 
evolutionary algorithm (EA), that has been developed based on Darwin’s natural 
selection and Mendel’s genetics, provides an alternative to the mixed integer 
programming techniques like the BB, GBD and OA. The class of evolutionary algorithms 
includes genetic algorithms (GA) (Holland, 1975); genetic programming (GP) (Koza, 
1992); evolutionary programming (EP) (Fogel et al. 1966); and evolutionary strategy 
(ES) (Rechenberg, 1973; Schwefel, 1995).  Among all the evolutionary algorithms, GA is 
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the most widely used. GA was first introduced by Holland (1975). It has been receiving 
increased attention due to a series of successful applications in different disciplines like 
biology, medicine and different branches of engineering (Tarafder et al., 2004) 
The basic idea of GA is to start from a population instead of a single point in the potential 
solution space of a specific problem, and allow that population to evolve from generation 
to generation by genetic operators like selection, crossover, and mutation until the 
stopping criteria are satisfied. In the evolving process, GA uses a structured yet 
randomized information exchange to form a search direction. The behavior of GA is 
characterized by a balance between exploitation and exploration. This balance is strongly 
affected by strategy parameters like population size, crossover and mutation rate as well 
as the mechanism employed for: 1) choosing initial population, 2) representing 
individuals and 3) performing evolution. The improvements proposed here are based on 
both adaptation of these features and incorporation of problem-specific properties similar 
to a scheduling problem. A number of modifications arising from the above 
considerations have been developed in the last several decades to obtain better 
performance such as real number encoding (Michalewicz, 1996), simulated binary 
crossover operator (SBX) (Deb and Agrawal, 1995), parameter adaptation (Herrera and 
M. Lozano, 1996), and hybrid genetic algorithm (HGA) (Özdamar, 1999). 
In this paper, a new strategy considering the improvements on population diversity and 
uniformity of random operations is proposed by applying a new sampling mechanism, 
Hammersley sequence sampling (HSS) (Diwekar and Kalagnanam, 1997), to both 
deterministic optimization and optimization under uncertainty problems. This new 
sampling mechanism has been shown to exhibit better uniformity over the multivariate 
parameter space. Furthermore, it has also been proven that the number of samples 
required to converge is less than the crude Monte Carlo sampling (MCS) and the variance 
reduction techniques such as latin hypercube sampling (LHS) (Iman and Conover, 1982). 
Genetic algorithm especially benefits from these features, since the calculation of cost 
functions is expensive due to the fact that it starts from a population instead of a single 
point.  
2. Overview of genetic algorithm 
The Genetic Algorithm was first developed by Holland (Holland, 1975). In general, there 
are five components in it (Michalewicz, 1996). 

• A genetic representation of solutions to the problem. 
• A way to create an initial population of solutions. 
• An evaluation function rating solutions in terms of fitness. 
• Genetic operators that generate new individuals. 
• Values for the parameters of genetic algorithms. 

The general procedure of genetic algorithms can be summarized as follows: 
At t = 0, 

• Generate initial population P(t). 
• Evaluate P(t). 

      While termination condition is not satisfied, do 
• Recombine P(t) to generate new individuals, i.e., children C(t). 
• Evaluate C(t). 
• Select P(t + 1) from P(t) and C(t). 
• Set P(t) = P(t + 1). 
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where P(t) is parent, C(t) is children and t is generation. Encoding plays an important role 
in genetic algorithm. The original GA uses binary encoding. But with increasing 
utilization of GA in more complex problems, new encoding methods have been 
developed, such as real-number encoding, integer or literal permutation encoding and 
general data structure encoding (Gen and Cheng, 2000). The initial population P(0) can 
be chosen heuristically or randomly. If it is chosen randomly, a corresponding sampling 
technique like Monte Carlo sampling (MCS) method is needed to propagate the initial 
population. To develop the next generation, genetic operators recombine the old 
generation to form a new one. Selection, crossover, and mutation are three operators 
generally used. Selection is a process in which the individuals selected based on their 
fitness are copied to the next generation. In this process, fitter solutions have a higher 
chance to contribute to the next generation while the unfit string patterns are phased out. 
Selection must work to strike a balance between selection pressure and population 
diversity. Selection plays an important role in exploitation, while crossover and mutation 
play important roles in exploration. The crossover operator randomly exchanges parts of 
the genes of two parents to generate two new children. Crossover serves two 
complementary search functions. First, crossover can provide new information about the 
hyper-planes already represented earlier in the population. By evaluating new solution 
strings, GA gathers further knowledge about these hyper-planes. Second, crossover 
introduces representatives of new hyper-planes into the population. If this new hyper-
plane is a high-performance area of the search space, the evaluation of new more-fit 
population will lead to further exploration in this subspace. The mutation operator 
performs a random gene change. A low level of mutation serves to prevent any given bit 
position from remaining fixed indefinitely to a single value in the entire population, while 
a high level of mutation essentially yields a random search.  
Termination criteria can be specified as the permissible maximum number of generations 
or an acceptable approximated solution. The evolution process can also be terminated 
when there is no obvious change of best individuals found after a fixed number of 
generations. Genetic algorithm parameters like population size, crossover ratio, and 
mutation ratio are key factors in the trade-off between exploitation and exploration 
(Holland, 1975).   
3. Sampling method. 
Monte Carlo Sampling, latin hypercube sampling (Iman and Conover, 1982), and 
importance sampling (Dantzig and Glynn, 1990) are widely used sampling techniques. 
Recently, an efficient sampling technique called Hammersley sequence sampling (HSS), 
based on Hammersley points has been developed, which uses an optimal design scheme 
for placing sampN  points on a k-dimensional hypercube more uniformly. This scheme 
ensures that the sample set is more representative of the population, showing better 
uniformity in the multi-dimensional uncertain surface compared to Monte Carlo, latin 
hypercube, and its variant, the median latin hypercube sampling (MLHS) techniques. The 
main reason for this is that the Hammesley points which are one of the minimum 
discrepancy designs provide an optimal design for placing sampN  points on a k-
dimensional hypercube. The sampling results on a unit square using MCS technique and 
HSS technique are shown in Fig. 1. It shows that samples generated by HSS technique 
achieves better uniformity and results in faster convergence to the “true” mean, variance, 
or fractiles (Diwekar and Kalagnanam, 1997).  
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4. Hierarchical improvements of Genetic Algorithm. 
The hierarchical improvements to the GA for both deterministic optimization and 
stochastic optimization cases include the following aspects: 1) efficient genetic algorithm 
(EGA). 2) efficient stochastic genetic algorithm (ESGA), and 3) efficient Hammersley 
stochastic genetic algorithm (HSGA). All of the three improved variants above are based 
on application of the HSS sampling technique, similar to the work on the improvements 
to simulated annealing by employing HSS (Kim and Diwekar, 2002). 
4.1. Efficient genetic algorithm.  
4.1.1. Overview.  
Population diversity plays an important role in the performance of genetic algorithm. The 
uniformity property of the HSS technique can be used in this step to avoid initial 
populations clustered in a small region of the potential solution space. Applying HSS 
technique in selection, crossover and mutation rather than random probability functions 
in these operations results in additional improvements. Generally, these random 
probabilities generated by pseudo-random number generators like crude Monte Carlo are 
uniformly distributed. Since HSS method shows more uniformity in generating samples 
over k-dimensional hypercube, its application here ensures a more uniform exploration 
and exploitation of solution space instead of a bias towards a particular region of solution 
space or chromosome, which would trap the genetic algorithm in a local optima. Another 
important issue that needs to be addressed here is that it is imperative that one maintain 
the k-dimensional uniformity property of HSS by generating N quasi-random numbers 
needed in each generation simultaneously for all probabilities instead of one quasi-
random number at each time for N times in each generation. Efficient genetic algorithm 
(EGA) is developed by implementing these new features. The algorithm is summarized 
as follows: 

At t = 0, 
• Use HSS method to generate initial population P(t), keeping the k-

dimensional uniformity property intact. 
• Evaluate P(t). 

      While termination condition is not satisfied, 
• Recombine P(t) to generate C(t).  Use HSS method to generate random moves 

in selection, crossover and mutation steps, keeping the k-dimensional 
uniformity property intact. 

• Evaluate C(t). 
• Select P(t + 1) from P(t) and C(t). 
• Set P(t) = P(t + 1). 

The following three examples are used in this paper to evaluate the performance of the 
newly developed genetic algorithm EGA. 
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where x denotes a vector of continuous variables, y denotes a vector of discrete variables 
and ND is dimension of the examples. Example 1 is a multi-dimensional parabolic 
function (Salazar and Toral, 1997) that has one global optimum at zero for all decision 
variables equals to zero. The second example, a pure combinatorial problem (Painton and 
Diwekar, 1994) that has one global minimum zero when all 1y , ( )iy2 , ( )iy3  are equal to 
3. The third example is a MINLP problem that has one global minimum -1.  
4.1.2. Effect of random seed on efficient genetic algorithm. 
Theoretically, the random seed which is used to propagate samples, should have no 
impact on the performance of HSS. However, the existence of limitation on sample size 
makes it impossible for the samples to cover the whole search space. This limitation 
directly induces a non-overlapping distribution of different set of samples on the k-
dimensional space, though each set of sample is uniformly distributed. From Fig. 2 we 
can observe the difference in the two sets of samples generated from different random 
seeds. The performance of EGA depends on the specific value of each sample, and hence 
will have a different convergence path due to the different set of samples used. The effect 
of random seed is tested on example (3) and summarized in Table 1, which shows that a 
different random seed for HSS produces a different convergence performance. There are 
already several parameters like population size, crossover rate etc. that need to be tuned 
to reach the best performance. The existence of additional parameters would make 
genetic algorithm less flexible. To increase the diversity of new populations and decrease 
the effect of different seeds, the strategy of parameter adaptation (Holland, 1975; Beyer, 
1996) is used for random seed adaptation. Since there is no relationship between 
performance and random seed value, changing random seed schematically at each 
generation would not outperform a randomly changing seed value. To simplify the 
algorithm while keeping the random seed as diverse as possible, the dynamic seed is 
used, which for simplicity takes the value of the system time.  It shows that it may not 
ensure the best performance, but it is better than the average case. And further, it avoids 
the time-consuming testing process. 
4.1.3. The efficiency improvement of EGA. 
To demonstrate the efficiency improvement of EGA over Monte Carlo genetic algorithm 
(MGA), the three examples (1), (2), and (3) have been used as case studies. Table 2 
presents the comparison results in terms of a fixed number of generations. The 
convergence paths of both EGA and MGA are presented separately in Fig. 3 to Fig. 6.  
Due to the better uniformity property of HSS, the best solution found by EGA in the first 
generation should be better than MGA. Fig. 3, 4, 5 show this trend. But Fig. 6 shows that 
the best initial solution for MGA for example(3) with ND equal to 5 is 31, while the best 
initial solution found by EGA is 89.08. Since MCS is not as uniform as HSS, in some 
regions MCS has more sample points than HSS, thus MCS would have a better chance to 
find the best solution when it lies in these regions. At the same time, the use of HSS on 
the genetic operation produces more uniform operation on the population. Such unbiased 
operations maintain a better balance between keeping the fittest string pattern and 
diversity. In all the case studies shown in Fig. 3 to Fig. 6, the fast convergence of EGA is 
observed while MGA is trapped in a local optimum before reaching maturity. All the 
above observations prove that GA benefits from the uniformity property of HSS, by 
producing more diverse individuals and operations. Further, the figures show that when 
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the dimension of the problem size increases from ND=10 to ND=20, the difference in 
performance between EGA and MGA is magnified. 
4.2. Stochastic genetic algorithm. 
4.2.1. Overview of optimization under uncertainty and stochastic genetic algorithm 
(SGA) 
Optimization problems involving uncertainties in the data or model are commonly cited 
as stochastic programming problems and are divided into categories such as “wait and 
see”, “here and now”, and “chance constrained optimization” (Diwekar, 2003). While 
formulating the optimization problems under uncertainty, the objective function and 
constraints are expressed in terms of probabilistic representations (e.g., expected value, 
variance, fractiles, or most likely values).  

( )[ ]ζ,min 1 xfPz =  (4)
( )[ ] 0,.. 2 =ζxhPts   
( )[ ] 0,3 ≤ζxgP   

Ξ∈∈ ζ,Xx   
 
Here x  is a vector of decision variables of domain X , and ζ  is a vector of uncertain 
parameters of domain Ξ . The objective function, equality, and inequality constraints are 
defined by a set of probability functions 1P , 2P  and 3P . The probability function iP  
represents a cumulative distribution function such as the expected value, mode, variance, 
or fractiles. If iP  is the expected value, the above optimization problem becomes: 

( )[ ]ζζ ,min xfEz =  (5)
 
where ζE  is the mathematical expectation with respect to ζ . In this case, the main 
difficulty of stochastic programming stems from evaluating the uncertain functions and 
their expected values. A generalized method to propagate the uncertainties employs a 
sampling technique. Once the sampling method is determined, then it propagates sampN  
samples for random parameter ζ  and optimizes the following approximated problem: 

),(1min
1
∑

=

=
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j

j
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xf
N

z ζ  
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Figure 7 shows a general framework of stochastic optimization. It has two loops, inner 
sampling loop to propagate uncertainties, and outer optimization loop to optimize the 
probabilistic objective function. Stochastic genetic algorithm (SGA) is used to in the 
outer loop to optimize a probabilistic objective function, which in our case is the 
expected value. The objective function includes the expected value of the objective 
function and a penalty term with respect to sample errors. The corresponding penalized 
objective function is as follows: 

( ) ( )εζζ tbxfEz += ,min  (7)

where ( )tb  is a weighting function, and ε  is the error bandwidth (confidence interval) of 
sampling method. In the stochastic genetic algorithm, the optimizer obtains not only the 
decision variables, but also the number of samples required for the stochastic model.  The 
weighting function can be expressed as a function of generation. At the beginning of the 
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search, accuracy is not essential, thus fewer samples are needed for the sake of 
computation efficiency, while with the evolution exploitation becomes dominant. In this 
case, more samples are needed to ensure the accuracy of the results. From the above 
analysis, an exponential weighting function can be derived: 

( ) tk
b

tb 0=  
(8)

where 0b  is a small constant (e.g. 0.001), k  is a constant (e.g. 0.92) and t  is the 
generation number. If the generation size is considerable, to ensure the penalty term does 
not exceed 5% of the real objective function, t should be divided by a constant value like 
100. The error bandwidth can be estimated from classical statistical methods, which leads 
to the following formula: 

( )αε
sampN
1∝  

(9)

where α  is sampling method related constant. The corresponding α  value for a crude 
Monte Carlo method is 0.5. The SGA algorithm is summarized as follows: 

At t = 0, 
• Generate initial population P(t). 
• Select the number of samples sampN  by a random move. If ( ) 5.01,0 ≤rand , 

then 
     sampN  = sampN  +10 *  rand(0,1) 
    else 
     sampN  = sampN  - 10 *  rand(0,1) 
• Evaluate P(t) with penalized objective function (7). 

      While termination condition is not satisfied, do 
• Update  sampN . 
• Recombine P(t) to generate C(t). 
• Evaluate C(t) with penalized objective function (7). 
• Select P(t + 1) from P(t) and C(t). 
• Set P(t) = P(t + 1). 

4.2.2. Efficient stochastic genetic algorithm (ESGA). 
The inner sampling loop is important when trying to optimize the objective function (6).  
In this inner loop, a sampling method like Monte Carlo sampling (MCS) or Latin 
hypercube sampling (LHS) is used for the uncertain parameters. However, the required 
number of samples to approximate the “true” mean or variance is large, which would be 
computationally expensive and this necessitates the use of an efficient sampling method. 
Hammersley sequence sampling (HSS), which shows both better homogeneities over 
multivariate parameter space and which uses less number of samples for convergence, is 
an ideal substitute in the sampling loop. Efficient stochastic genetic algorithm (ESGA) 
uses the same strategy as in EGA, in which HSS is used to produce initial populations 
and improve the uniformity of selection, crossover and mutation. In addition, the HSS 
method is also used for uncertainty analysis in the stochastic model. Thus in ESGA, HSS 
is used both in the inner sampling loop and outer optimization loop.  
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4.2.3. Hammersley Stochastic Genetic Algorithm (HSGA). 
The error bandwidth used in SGA and ESGA is derived from the estimation of the 
bounds of Monte Carlo sampling using classical statistical methods. But this method 
overestimates either the confidence intervals or bounds (Chaudhuri and Diwekar, 1999) 
for HSS. Thus, a new error bandwidth for HSS needs to be characterized to get more 
efficient HSGA. A strategy based on the concept of fractal geometry (Kim and Diwekar, 
2004) to quantify the error bandwidth has been developed. The new α  value for HSS 
method is -1.4, so the new HSS-specific error bandwidth is given by: 

( ) 4.1

1

samp
HSS N

∝ε  
(10)

With the incorporation of this new error bandwidth in the penalty term, the development 
of the Hammsersley stochastic genetic algorithm (HSGA) is complete.  
4.2.4. The performance of SGA, ESGA, and HSGA. 
Example (3) is modified by adding uncertain factors, which leads to a stochastic MINLP,  
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Fig. 8 shows the convergence path of SGA, ESGA, and HSGA, in which HSGA achieves 
the best performance and SGA the worst. The efficiency improvement of ESGA and 
HSGA over SGA is due to both the improved uniformity and faster convergence 
properties of HSS. HSGA outperforms ESGA because of the reduced error bandwidth. 
The usage of the HSS bandwidth reduces the possibilities of distraction from the optimal 
objective value, thus make HSGA reach the real objective value faster. 
5. Conclusion. 
In this paper, the newly developed HSS technique has been applied to genetic algorithm 
to improve the performance for both deterministic and stochastic optimization problems. 
Efficient genetic algorithm (EGA) has been developed for solving deterministic 
optimization problems by capitalizing on the better uniformity property of HSS technique 
in population initialization and genetic operation. The effect of seed on EGA was tested, 
which resulted in the use of dynamic seed to increase population diversity and to decrease 
the dependence of performance on the random seed. In developing efficient stochastic 
genetic algorithm (ESGA), both faster convergence and the uniformity properties of HSS 
technique have been exploited. In Hammersley stochastic genetic algorithm (HSGA), the 
HSS-specific error bandwidth has ben applied to the penalty term of the probabilistic 
objective function. HSGA has been proved to converge faster than stochastic genetic 
algorithm (SGA) and Efficient stochastic genetic algorithm (ESGA). 
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Fig. 1: Comparison between (a) MCS sampling and (b) HSS sampling technique. 
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Fig. 3: The convergence path of EGA and MGA for Example 1 with ND = 10 of a single 
run. A is the best initial solution in the first generation of MGA, while B is the best initial 
solution found in the first generation of EGA. The total number of generations is 150. 
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Fig. 4: The convergence path of EGA and MGA for Example 1 with ND = 20 of a single  
run. A is the best solution in the first generation of MGA, while B is the best solution 
found in the first generation of EGA. The total number of generation is 200. 
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Fig. 5: The convergence path of EGA and MGA for Example 2 of a single run. A is the 
best solution in the first generation of MGA, while B is the best solution found in the first 
generation of EGA. The total number of generation is 200. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: The convergence path of EGA and MGA for Example 3 with ND=5 of a single 
run. A is the best solution in the first generation of MGA, while B is the best solution 
found in the first generation of EGA. The total number of generation is 200. 
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Fig. 7. The framework of stochastic optimization. 
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Fig. 8: The convergence path of SGA, ESGA, and HSGA for stochastic example of 
equation (11) with ND = 5. 
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Table 1: The effect of seed on the performance of efficient genetic algorithm for example 
(3) with ND = 5. 

Random seed 425001 888868 25689 256 Dynamic seed 
Objective value -0.9994 -0.9983 -0.9970 -0.9958 -0.9992 

Generation 22 200 200 200 124 
 
 
 
 
 
Table 2: Comparison of EGA and MGA with examples (1), (2) and (3). The results of 
EGA are the average of five runs with dynamic seed value. 
        Optimal value/Generation   

  ND 
Total number of 

generations MGA EGA 
Theoretical 

optima 
Example 1 10 150 2/150 0/40.6 0 

  20 200 26 / 200 0 / 195.2 0 
Example 2   200 1 / 200 0 / 16.4 0 
Example 3 5 200  -0.9987 / 200 -0.9991 / 88.6 -1 
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