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Multiscale systems offer unique challenges in modeling and control. From a modeling viewpoint, these 
systems are of very high dimension. Most of the systems have a stochastic component, resulting in noisy 
outputs. Additionally, their models are usually not in standard state space form, meaning that the 
application of advanced control strategies is not straightforward. The small number of measurements 
available also means that observability is an important issue in estimation and model identification in 
these systems. From a system analyst's viewpoint, another important characteristic is that the variables 
we wish to control (surface roughness, for example) are typically microscale quantities, while the 
possible manipulated variables (temperature, pressure, flows) act at the macroscale. This means that the 
model identification and estimation at the microscale cannot be neglected in developing a control 
strategy. 

In this work, we present an approach to the dynamic analysis and control of multiscale systems that 
involves building reduced order models at the microscale, connecting them with macroscale models, and 
constructing estimators and controllers based on the reduced order models. Previous studies on control 
of multiscale systems have attempted to construct estimators and controllers using reduced order 
models, and the order reduction has been achieved by grouping probabilities [1] or by using a smaller 
lattice [2]. However, the model identification and reduction methods used in the current work differ 
from these methods. 

We consider multiscale models of the form where kinetic Monte Carlo (KMC) models describe the 
microscale behavior, and deterministic continuum models using partial differential equations are used to 
model the macroscale. However, the model reduction methods we choose ensure that the choice of the 
form of the microscale model is theoretically not a constraint on the application of the method. We 
choose two example systems to demonstrate the method - a copper PVD process [3] and an epitaxial 
growth process [4]. The main features of the Cu PVD model, which along with the KMC algorithm is 
taken from Wang et al. [3], are the inclusion of events representing deposition, adatom diffusion, ledge 
adatom diffusion, dimer diffusion and diffusion across facets at the microscale. The epitaxial growth 
model, taken from Raimondeau and Vlachos [4], is also a KMC model and includes events describing 
adsorption, desorption and surface migration. Both of these models provide predictions of surface 
evolution at the microscale as a function of time. Consistent with previous treatments, the macroscale 
behavior in both systems is modeled as a stagnation-point flow reactor. The variables to be controlled in 
these systems are the growth rate and surface properties such as microroughness, and the manipulated 
variables are temperature and inlet mole fractions or fluxes. 

The model reduction methods used in this work are of two types - proper orthogonal decomposition 
(POD) and a balanced truncation-type approach. Both methods use simulation data and system 
snapshots to construct the reduced order models. While the POD results for the epitaxial growth model 
matches those reported in [4] and [5] (i.e., low number of basis functions), the POD analysis for the Cu 
PVD system reveals the need for a much larger number of basis functions (approx. 25). Motivated by 
the application of nonlinear PCA methods with artificial neural networks (ANNs) [6] to KMC models 
and the results of Shvartsman et al. [7] in which slaving of higher pod modes (using ANNs) was found 
to be an efficient model reduction strategy for nonlinear distributed parameter systems, we apply a state-
space model reduction method developed by Prasad and Bequette [8] to reduce the number of basis 
functions in the reduced order model. Since a POD analysis from snapshots only provides us with an 
input-output model and not an input-state-output model, we implement another model reduction method 
based on balanced truncation and compare the results with the POD-derived model. The nonlinear 
balanced truncation methods use empirical observability and controllability Gramians as described by 



Lall et al. [9]. The reduced order microscale models are linked with the reactor scale models to derive 
the estimation and control algorithms. 

The reduced order models described above are used in two different methods of identification and 
estimation. In the first case, we develop an estimator for the system using the reduced order models. The 
estimator is an extended Kalman filter, and is applied to both types of reduced order models. Unlike the 
results of Raimondeau and Vlachos [4], we find that direct interpolation of POD based models to 
intermediate conditions or parameter values (for example, interpolation using POD models developed at 
200 and 400 C to a system at 300 C) does not provide good results. Consequently, we also develop a 
multiple model based identification approach to extend the use of the reduced order models to situations 
outside the phase space envelope for which they have been derived. This approach uses measurements to 
optimally blend models to obtain the best predictive model. 

Finally, we design PID and model-based controllers based on the identified and estimated reduced order 
models and provide simulation results on the multiscale systems, which show the efficacy of the 
developed methods in controlling microscale properties like surface roughness. 
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