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Abstract 
 
The complexity of chemical process systems and related spatial systems is familiar to all those practicing in this 
field. This complexity is inherent in the nature of the chemical process system problems, the multi-objective 
attributes of chemical process systems problems and the interactive coupling within chemical process networks, 
including raw materials and human resources as related to their quantity and quality. The complexity is also due 
to the difficulties of retrieving, transmitting, processing and analyzing data and to those aspects of decision-
making process such as the institutional, political, and economic aspects as well as the technical, environmental 
and social impacts. 
 The multiple goals of different parts of the overall system is inevitable and inescapable and it should be 
quantitatively analyzed. This fact will drive all those practicing in this field to adopt systems methodologies that 
are amenable to modeling, analyzing and optimizing these complex systems. 
 Many applications of system engineering methodologies to large-scale chemical process system are 
adopted here. In particular, the applications of the hierarchical-multi level approach to large-scale and complex 
chemical process systems are discussed. The resulting system approach in chemical processing development 
requires the optimal use of innovative research results from different professional discipline in university and 
industry and the cooperation between the user, government and chemical processing system constructors as 
well. 
 
Keywords: Multi-objective Attribute; System Approach; Hierarchical Multi Level approach. 
 
1. INTRODUCTION 
The problems in chemical process system are often large enough to strain and exceed the abilities of a 
single team of engineers. These large problems are necessary to relegate the design responsibility to 
several more or less autonomous experts and each responsible for a part of the system. If one or more 
team of engineers are engaged with this kind of problem, the question to be asked is: “How is the effort 
of these teams to coordinate their activities so that their design will mesh together to form an optimal 
system?”. 
 Typically, the design of a chemical process system which is large with chemical plants around 
the country must be divided into numbers of sub processes which will purchase chemicals from each 
other and from the outside. And these facts leads to the implant prices that should be set to force the 
several designs so that the levels at which the efficiency of the large complex process system obtaining 
it maximum values. In an extremely large problem, the engineer must face the choices between an 
absolute need for reducing the size of the individual units and the reality that the careless optimization 
of the smaller units may not be in the best interest of the overall system. And the problem is how the 
efforts of those responsibilities for the subsystem are coordinated to achieve the system goal. The 
answer for this problem can be accommodated by multilevel optimization. 
 In chemical engineering design practice, the engineer deal with the large scale problem and a 
multilevel approach can be used to solve this kind of problem. A multilevel approach in which the 
responsibility for the engineering of each of the subsystems is assigned to individual engineering 
groups which is known as first-level are only responsible for the design of their subsystems. In doing 
their duties, they need not concern themselves with the design of any other portion in the process. And 



at the second level, the coordinating groups is responsible for the overall system behavior and this level 
is divorced from the need for considering all the details of the subsystems. They are charged only for 
assuring the cooperation of the other groups in achieving the system goal. 
The communication must be maintained between this two levels by supply, demand and price 
parameters. This two levels model can be extended to more than two levels model and this extension 
will be discussed in this paper. 
 
2. THE STRUCTURE OF GENERAL HIERARCHICAL MODELING 
In this section we will discuss the structure of general hierarchical modeling for large scale design 
problem and the chemical processing model. The first will be discussed in short while the second will 
be discussed in long. 
 
2.1. Large Scale Design Problem 
In this subsection we will see how the dilemma appears in a large processing system design and how 
we can handle it. The dilemma of a large processing system optimization can be handled by multilevel 
approach. In this approach we should know what it means with subsystems, and subsystem 
optimization and thus, the forced cooperation. 
 
The Dilemma of A Large System In a large processing system design, a practical limit exists on the 
number of detail for which the single group of engineers can be held responsible. Usually, large 
processing system exceeds this limit and hence, there is a need for tearing the large system into a 
number of smaller subsystems. This tearing make possible to allocate the responsibility for the design 
of subsystems among a number of engineering groups. We see the responsibility for the design of a 
chemical processing system distributed among the raw material handling and separation design group, 
fractionation system design group, the waste treatment systems design group, and so forth, the original 
system being to large for one group to handle all of the details in the design. 
 The realization of tearing a large system into a number of subsystems may restrict the original 
problem, and the optimization is achieved only if it is free and no interaction is allowed among all 
subsystems in the system with its surroundings. This is the source of the dilemma. Thus, it need an 
approach to optimize the large design problem and the promising tool is a multilevel approach. 
 
The Subsystems   Our focus attention now on the design of the large system and the system has been 
divided into individual subsystems which interact via the state variable χ, which might be the flow rates 
of the products and intermediates. The design goal is to select the detailed designs for subsystems that 
maximize the overall system objective function, F, consisting of the contributions F1, F2, …, Fn from the 
subsystems. For example, the subsystem 1 might be, the profit calculated from the value of chemicals 
sold by the subsystem to the surroundings, less the manufacturing costs and the appropriate charges 
for capital invested in the subsystem. Since there is no way of assessing the values of implant transfer 
of material or energy, no charge is assigned to such implant transfer. 
During the development of the objective function of each subsystem, internal transfer are considered to 
be free and unlimited, and in this way the subsystem are torn free from the system. Within its domain of 
responsibility, each group at the first-level has the following: 
(1) The contribution to the overall system objective by the subsystem 
(2) The design details δ of the subsystem in which each group is the sole authority. 
(3) The state variables χ which connect the system with other subsystems. 
 

Then, the large processing system may be written as 
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With the responsibility assigned to the subsystems group at the first-level as follows 
 
 



• The Objective Function: 
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• The Design Detail 
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The expression for the design detail of subsystem 1, for example, is a shorthand expression of all the 
tools are elected to bear by Group I1. This group design relation states that for a given a given design 
detail δ1, and for given state variables nχχ ,..,2 ; the behavior the group for this area can be predicted by 
the group due  its responsibility related to the system and assign a value to output 1χ , and this may 
require the efforts of the team of engineers aided by computing facilities. 
 
Sub-optimization.   The optimization of any subsystem by itself, without interaction with other parts of 
the system will give no optimal strategy for the system. Thus, there must be cooperations among the 
groups of process system designer and it is needed to have a new coordinating group to assign 
suitable sub-optimization goals to the subsystems to force their cooperation. 
 Such cooperation can be accomplished by requiring that each subsystem buy its input state 
variables from the other subsystem and sell its output state variables to the other subsystems at 
assigned prices. While attempting to solve their own sub-optimization problem under coordination  of 
the coordinating group, all first-level groups are led to cooperate in solving the system problem. In this 
case, the task of the coordinating groups is to assign and adjust prices of these state variables. 
For example, consider system of three subsystems: 1, 2 and 3. Sub-system 1 buy the input state 
variable from subsystem 3, χ3, and sell its output state variable, χ1, to subsystem 2. Sub-system 2 buy 
its input from and sell its output to the surrounding. Sub-system 3 buy its input state variable, χ2, from 
subsystem 2 and sell its output to the surrounding. If φ1, φ2, and φ3 are the implant prices to be 
prescribed by the second-level coordinating group, then this example shows that: being required to buy 
and sell from within, the first-level groups will pursue the maximum of the new objective functions: 
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Now, we can make a few observations. The first-level groups have additional variables to 
manipulate during sub-optimization, i.e., the amount of input state variable. Hence, for given prices 
each subsystem will demand certain of its input state variable as an attempt to achieve local maximum 
goal. In other hand, that demanded by one subsystem must be supplied by another, while the prices 
which force the equality of supply and demand are still unknown.  



Intuitively, we can expect that the system will operate efficiently when all implant supplies and demands 
are equal and this also happen to the large class of optimization problems which exhibit properties of 
continuity and differentiability. For this class of optimization, the sub-problems are extracted from the 
Lagrangian of the original problem as will shown later in this paper. Thus the theory of Lagrange 
multipliers can be used to validate the criteria of the sub-optimization design. 
 The first level subsystem group now set forth its tentative design based on the assumption 
that the implant material is available at free of charge. And the second-level coordinating group 
compares the supplies and demands and attempts to design artificial implant prices for the state 
variables. These activities will cause the first-level groups to readjust their tentative design toward the 
condition where the demands of each subsystem equal the supplies given by other system.  
 These facts had been indicated above, i.e., the first-level groups communicate with 
coordinating group of the second level via supply and demand variables and the second-level 
coordinating group communicates via price parameters. Here is the procedure for the coordination of 
first-level groups: 
Step 1. Supply the sub-optimization goals 
Step 2. Propose the tentative designs 
Step 3. Supply and demand data 
Step 4. If the tentative designs are fit together, then stop. Else, repeat step 1. 
 

After receiving  supply and demand data, the coordinating group should make an adjustment of the 
price parameter to more equate the supplies and demands on the next round. Then, the coordinating 
group must analyze these data and find a new set of prices for the next round. The attack results in 
solving the minimization problem 
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Problem indicated by eq. (5) can be solved using direct search approach. 
 When the demand of a commodity exceeds the supply, commodity value will increase in 
marketplace and it provides more incentive to produce and less incentive to consume. Thus, this 
situation tends to drive the supply toward the demand in the future and this situation suggests a price 
adjustment for the system coordination problem. The new price is now estimated by 

                         ( ) ...,,iforplysup
i

demand
ii

old
i

new
i 321=−=− χχκϕϕ    (6) 

where κis are constants of proportionality. These constants determine the rate of convergence of the 
price adjustment scheme. When the demand exceeds the supply then the prices tend to rise. But if the 
supply exceeds the demand then the prices tend to fall. 
         
2.2. Chemical Process System 
The modeling of chemical process systems, where the quality is the main theme, results in large 
dimensions model. The fact that the product quality cannot be expressed by one-dimensional state 
variable, nor can there be a unique representation of chemicals as the product of the chemical 
processing system. There cannot be a unique representation of a chemical quality, its characteristics 
and properties are the combination of impurities contained in the chemical, temperature, pressure etc. 
Moreover chemical process system always consists of the chemical resource and treatment system. 
This system will affect the quality of chemical and it is important that the chemical quality also cannot 
be expressed as a one-dimension state variables. Like a chemical, we cannot have a unique 
representation of water quality, since the chemical characteristics and properties are the result of a 
combination of indicators such as organic material, temperature, BOD, chlorides, phosphates, nitrates, 
algae, etc.  

Nevertheless, in a chemical processing system, some measures of chemical characteristics one 
considers, the more accurate a description of the chemical quality one gets, and consequently, the 
more complex one’s system model becomes.  
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Figure 1. Model for Subsystem i. 
 

 A general mathematical model is developed here first. Each case where chemical effluent is 
discharged directly into the product tank, into the packaging plant, or into a bypass pipe leading to a 
subsequent chemical plant, constitutes a special case of the general model. 
 Consider a chemical processing system (CPS). Let Ui be the the i-th chemical input vector to 
the CPS, i = 1,2,…..,N. 

 

    Ui
T = {Ui1,Ui2……Uim}      (7) 

 

where Ui1 represents the chemical quantity and Ui2…..Uim represent different chemical characteristics, 
e.g., temperature, density, heat capacity, etc. 
 It is convenient to decompose the CPS into N subsystems, each of which includes one 
chemical input Ui (see Figure 1). Let 
 

Wi  be the input vector coming into the i-th subsystem from other subsystem 
Vi   be the output vector of the i-th subsystem going to other subsystems, and 
Yi    be the output vector of the i-th subsystem leaving the system 
 

Where Wi, Vi, and Yi are of the same dimensionality as Ui, i.e., m-dimension and the vector sum Wi  +  Ui 
is meaningless and is not equal to Vi  + Yi. 
It is assumed that the subsystems outputs Vi and Yi can be represented by the following functions: 
 

           Vi = Ξi(Ui,Wi)                                                                        (8) 
 

           Yi = Ψi(Ui,Wi)                                                                        (9) 
                  i = 1, 2,… , N 
 

where  
                  Ξi

T =   {  Ξi1, Ξi2,,……., Ξim} 
 

                   Ψi 
T

 =  { Ψi1, Ψi2,……., Ψim} 
 

We see that not all components of the functions Ξi and Ψi are known to chemical quality experts. And 
this constitutes no limitation to the model, because if the functional relationship of any component of Ui 
is known, we can add that component. The presence or absence of a component of Ui has a strong 
effect on the model. With the greater the number of components of Ui that are considered and 
analyzed, we will have the more accurate and representative mathematical model, assuming that all 
needed data are available. 
 More general formulation is required in order to handle branching in the CPS under 
consideration. This general formulation is made where more than one input from other subsystems 
enters the ith subsystem. The approach taken here for hierarchical multi-level optimization would be 
much simpler without introducing branching in the CPS. And without loss of generality, it is assumed 
that no branching will occur. 



Suppose 
H,(U,,W,,Y,) < 0 i= 1,2.. . ,  N (10) 

be the vector of constraints to be satisfied by the/th subsystem, i = 1,2,....N and H~(U~,WNi) are K- 
dimensional continuous functions. The physical, legal, economic, and other system constraints and 
also equality constraints are represented by equation (10). 

The sum of the treatment cost functions of each system F~(U~,Y~) is the overall CPS treatment 
cost functions, F, that is • 

N 

F -  ~F,(U,,Y,) (11) 
i=1 

It is assumed that the cost function F~ for the/th subsystem is an explicit function of the effluent input U~ 
and the output Y~. It is assumed that the functions F~(U~,Y~) are continuous. The assumption that the cost 
function of F,{U~,Y~): depends only on U~ and Y~ can be replaced by a more general cost function which 
depends on all U~ and Y~, I - 1,2 ..... N. This will require a further decomposition of the CPS treatment 
cost function by introducing pseudo-variables. 

Systems Decomposition Assume that there are existences of a regional authority that has control 
over chemical processing facilities. Also that each subsystem may develop its own chemical processing 
facility and its development should be economically justified by the optimization procedure. 

In the two-level optimization procedure, the CPS is decomposed into N "independent" 
subsystem. At the first level, each subsystem is separately and independently optimized. In the second 
level, the subsystems are joined by coupling variables which are manipulated by second level 
controllers in order to arrive at the optimal solution for the whole system. These controllers are the 
system model Lagrange multipliers. 

The optimization problem for the overall system can be summarized as follows: 

rain F = Z F , ( u , , Y ,  
i=1 

Subject to 

v; 
Y, = V, (U,,W,) 
H, (U,, W,,Y,) 

W/+, -V, 
i = 1,2,...,N 

(12) 

where WN+I = MN is the chemical leaving the CPS. 
Form the Lagrangian L: 

N N-1 N 

L : ZF,(U,,Y,)+ Z 2r Iv, - w,+,]+ ~_.,,orH,(U,,W,,Y,) (13) 
i=1 i=1 i=1 

Where A; are m-dimensional Lagrange multipliers; i -  1,2, .... N- 1, and are Nh dimensional generalized 
Lagrange.multipliers, i -  1,2,..N 

Substituting the values for Y~ and V~ from eqs (2),(3) yields 
N N-1 N 

L-  ZF,(U,,~,)+ ZAT [~ (u ; ,w , ) -  w,+, ]+ ZprH,(U,,W,,Y,~,) (14) 
/=1 /=1 i=1 

It should be noted that 
N-1 N - I  N 

Zg[-=(u,,w,)- W,+l]= Z  la,, (u,, w,)- Z w, 
i=1 i=1 i=2 

Then L is then decomposed into N independent subsystems" 
N 

L=~L,(U,,W~,p~,2,) (16) 
i=1 

where 



      ( ) ( ) ( )iiii
T
ii

T
iiii

T
iiiii ,,H,,FL ΨWUWWUΞΨU ρλλ +−+= −1 ;  i = 1,2, …, N                                                           

            (17) 
and also by definition, 
                               ( ) 0≡NNN

T
N ,WUΞλ       (18) 

 

                                      011 ≡WTλ        (19) 
 

Thus we have defined, λi for i = 1, 2, …, N 
 The Lagrangian L has a saddle point at ( )0000
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                      0
iρ  ≥ 0          (24) 

 

   for i = 1,2,.....,N 
 

with the assumption that the Kuhn-Tucker constraints qualifications hold. A saddle point for the 
Lagrangian , L, given by equation (10) satisfies the following inequalities: 
 

             ( ) ( ) ( )00000000
iiiiiiiiiiii ,,,L,,,L,,,L λρλρλρ WUWUWU ≤≤                            (25) 

 If the saddle point exists, 0
iU and 0

iW will minimize L, while 0
iλ  and 0

iρ  maximize  L. This fact 
is important for the coordination between the two levels of optimization in this problem because of the 
Lagrangian  formulation. Note that  ρi not a vector of pseudo variables but it is a vector of Lagrange 
multipliers associated with the inequality constraints. 
 
 λ = [ λ1

    λ2   …..   λN]        (26) 
 
 ρ = [ ρ1

    ρ2  …..   ρN]          (27) 
 

Since λ and ρ has been assumed to be known at the first level, then the first level optimization will 
consist of obtaining Ui   and Wi   which minimize the corresponding i-th subsystem Lagrangian.  
 

            Second level calculates λ0 and  σ0 

 
 
                      0

1W         0ρ        0
2W     0λ           0

NW          0λ  
 
 
 
                         0

1U          0λ                 0
2U       0ρ                 0

NU         0ρ  
 
 

First Level        Subsystem                  Subsystem       .   .   .    Subsystem 
                                1                                  2                                    N 
 
      

Figure 2.  Schematic diagram of Two-level Optimization 



 With known values of   Ui
0(λ , ρ) and  Wi

0 (λ , ρ)  from the first level, the Lagrangian L of the 
whole CPS is maximized with respect to ρ and λ and this  occur at the second level. This is an iterative 
procedure which terminates when convergence is achieved.   
 
Economic Interpretation of λi    The Lagrange multipliers λi associated with the equality constraints 
Wi+1 = Vi are of special interest. The two-level optimization approach studied in this paper is analogous 
to the operation of a perfectly competitive economic system. The λs are prices determined by the 
regional authority for the pollution caused by the subsystem. In turn, each subsystem must have a 
capability to determine its own policy on whether to pay the price specified by the regional authority for 
causing the degradation of the quality of the water body due to the waste effluent from the chemical 
processing plant or to invest its money in developing local waste chemical processing plants which in 
turn will improve the quality of its effluent discharge. If the total cost of improving the quality of the 
system by the regional authority  as a whole is minimized, then the optimal policy for each subsystem 
can be reached and this is both economically and socially desirable. 
 Ideally, the regional authority should have the power to review engineering plans for individual 
plants to ensure that the polluters (users) can do with their claimed treatment efficiency.  
 

 
3. TWO-LEVEL STRUCTURE 
In this section we will discuss two-level structure for chemical processing system and water treatment 
system. 
 

3.1. THE CHEMICAL PROCESS SYSTEM 
The following formulation of the mathematical model is made for single chemical processing system 
called subsystem, then it is extended for N subsystem. The observed Chemical Process  System is the 
pure chemical processing system and it does not includes waste water treatment system.  
 Based on the concept developed in the preceding section (see Figure 1) we will develop a 
general model for this system. The raw materials and energy enters the subsystem-i and they are 
imported from outside or from the other subsystems. For example, the optimal operation of steam 
reforming of hydrocarbon unit is of utmost concern to the industry. This is because steam reforming of 
hydrocarbons has established it self as the most economic and preferred process of the production of 
synthesis and hydrogen gas and the large value addition involved in the process as well as its high 
energy consumption coupled with energy cost. 
 The choice of feed stock for chemical processing system is largely by location, availability, 
and the local energy policy.  
 In this paper, a rigorous general model taking into account the presence of reactant, energy 
and catalysts used. There after, optimal operating conditions for the complete plant are obtained by 
considering simultaneous maximization of the main product and export flow rate and minimize the 
reactor heat duty for a fixed reactant feed rate. Reactor heat flux profile is considered a decision 
variable in optimization, thus predicting an optimal heat flux for Pareto- optimal solution.  

In order to achieve at the best result, before develop the model, process description must be 
studied carefully. With this description, the model can be developed and thus followed by formulation of 
the optimization problem. For example, consider an urea producing plant (see for example Reference 
No. 1). Hydrogen is made from natural gas using high and low temperature converters,  Hydrogen and 
steam is produced. Large part of Hydrogen is used for producing ammonia through a ammonia 
synthesis loop. Ammonia is then used to manufacture urea.  Hydrogen, steam, and ammonia will also 
be exported to the other plants such as nitric acid plant, formic acid plant and hydrogen peroxide plant. 

The profitability of operating a hydrogen plant will depend on the revenue generated from the 
sale of hydrogen and steam. When the generalized cost values can be obtained, these factors then can 
be combined into single parameter, the profitability function, to be minimized during optimization. Thus 
the optimization problem for hydrogen plant, the simultaneous maximization of the flow rates of product 
hydrogen, Fhydrogen, and the exported steam, Fsteam, and this should be considered first.  



The consumption of furnace fuel should also be considered as the third objective function to be 
minimized. The inclusion of consumption of furnace fuel, poses a difficulty due to the way in which the 
requirement of furnace fuel is determined in the model. By integrating the heat flux on the reformer 
tubes along the tube length, we can find the total heat duty  required by the reformer, QR. Thus the 
minimization of QR, should be considered third objective function. Thus the objective functions of the 
optimization are 
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       (28) 

The operating temperature, i.e., the catalyst tube wall,  should not exceed 1200 K, because the 
reformer tube metal will creep under thermal stress, resulting in rupture (see Reference No. 8) and this 
can be expressed by the following equation 

                             TW,max  ≤ 1200 K       (29) 
 
Another constraint is based on thermodynamic consideration, to prevent the reversal shift 

reaction, i.e., the ratio of H2O to hydrogen is to maintained in specified level say 0.3 
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Two remaining constraints are the duties of heat exchanger and the total feed rate to the unit 
must conform to design margins. They are 

 
                                                  QE   ≤  α QE, max        (31) 
and 

                                      F   ≤  α Fmax                 (32) 
 

where α is a specified constant. 
The objective function QR is constrained by the fraction of the total reformer duty, QSR, supplied by 
furnace fuel, QFF, i.e., 

                                                    β=
SR

FF

Q
Q

       (33) 

where β is a specified constant and it is based on the typical industrial values. (see Reference No. 6) 
The axial heat flux profile of the reformer is a function of tube length x. The side fired system 

has many burners at varying height to provide greater flexibility  in controlling the heat input to the 
reformer. For industrial application, the typical heat flux profile is quadratic with a dominant peak near 
the entrance. Two parabolic functions of are included are used to model the sections of the tube 
preceding and following the position, x*, which the maximum flux occurred. Those functions are 
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and 
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    (35) 

The decision variables are taken from the operation of steam reformer, i.e., the variables that fully 
determine the operation of the steam reformer. These variables are the temperature at the inlet of 
steam reformer, TReformer, in, pressure at the inlet of steam reformer, PReformer, in, steam to carbon ratio at 
the inlet of steam reformer, (S/C) in, hydrogen to carbon ratio at the inlet of steam reformer, (H/C) in, the 
axial location in reformer tube where the maximum heat flux occurs, x*. While A, B, C, D, and E are the 
coefficient of eqs. (34) and (35). These decision variables are described by the following bounds 



  
           TReformer, lower    ≤  TReformer, in  ≤  TReformer, upper ,     (36) 
           PReformer, lower  ≤  PReformer, in  ≤   PReformer,upper ,     (37) 
              (S/C) in ,lower  ≤  (S/C) in  ≤  (S/C) in ,upper      (38) 
              (H/C) in ,lower  ≤  (H/C) in  ≤  (H/C) in ,upper      (39) 
            Alower kcal m-2h-1  ≤  A  ≤  Aupper kcal m-2h-1,     (40) 
                         Blower  ≤  B  ≤  Bupper  kcal m-2h-1,     (41) 
                         Clower kcal m-2h-1  ≤  C  ≤  Cupper,     (42) 
                         Dlower kcal m-2h-1  ≤  D  ≤  Dupper,     (43) 
          Elower kcal m-2h-1  ≤  E ≤  Eupper kcal m-2h-1,       (44) 

and 
                                    xlower ≤  x*  ≤  xupper,      (45) 

 
while the remaining decision variable is the adiabatic HT shift converter : 

           TReformer, lower    ≤  TReformer, in  ≤  TReformer, upper ,     (46) 
The subscript ‘upper’ denotes the upper limit and ‘lower’ denotes the lower limit of each decision 
variables, respectively. 
Now, the problem of optimization for the hydrogen plant can be written as 
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Equation (47) is the multi-objective optimization problem and it can be solved numerically by the 
methods available. The use of  the surrogate worth trade-off method, after decomposition will lead to 
the problem of hierarchical multi-level optimization. (See Reference No.3) 

 
3.2. WATER SYSTEM: INDUSTRIAL AND NON INDUSTRIAL USES   
The following formulation of the mathematical model is made for the river which is polluted by nearby 
process industries. Suppose we have a river is segmented  into r reaches, p of which are associated 
with polluters who discharge organic wastes into the stream (see Figure 3) Since data are available 
only for dissolved oxygen standards, the model is a relatively simple one. We will make a relation to 
transform minimum dissolved oxygen standards for each reach into a set of linear inequalities relating 
upstream treatment levels to downstream decisions. 
 
Model Formulation    The constraints require that the supply of available oxygen for the organic 
decomposition process in each reach (that available above the quality standard requirement) must be 
equal to or exceed the demand imposed by BOD loads discharged into that reach and all reaches 
preceeding it. Thus, for reach i it is required that: 
 

 di1b1(1 – x1) + di2b2(1 – x2) + ….+ diibi(1 – xi)  ≤  σi                             (48) 
where 



 bj = gross biological oxygen demand (BOD) load introduced at the beginning of the j th  
                      reach that has a polluting input (kg/day). 

   xj = percentage of  bj removed through treatment by the jth polluter 
   dij = kgs of oxygen demanded by the decomposition of a pound of BOD  discharged   
          by the jth polluter in reach i 
   σi = amount of dissolved oxygen available for decomposition process (total available  
          less standard requirement) in  reach I per unit of flow. 

The system of inequality constraints Eq.( 48) can be rewritten  more compactly as follows: 
 
                      ai1x1 + ai2x2+…..+ aiixi   ≥   ci      (49) 
where 
                            aij = di1 bj 
and 
               ci = ai1 + ai2 +…….+ aii  - σi 
 

 In addition, other restrictions on xj’s are wR <xj< Tupper, j = 1,….,R, which ensure that all 
discharges be subjected to at least primary treatment. In general, primary treatment involves 
chlorination, filtering, and settling to reduce bacteria and remove bulky solids. Such sewage treatment 
usually remove about 100wR % of the gross BOD waste load. Also 100 Tupper % is assumed to be the 
upper treatment limit. 
  
 

                                                       BOD load (inputs from the polluters) 
                                     
                                      1                        2 ….               p       
 
               Reach 
                    1      2          3         …      9           ….     12        13        ….      r 
the river 
 

 

Figure 3. The decomposition structure of a river 
 

If fi(xj) is the treatment cost function of the jth polluter. Then the optimization problem for the 
River takes the following forms: 

 

    min ( )∑
=

P

p
pp xf

1
       (50) 

subject to  
  a11x1     ≥ c1 
 
  a21x1 + a22x2    ≥ c2     (51) 
  .            .             .      .                            . 
  .            .             .      .                            . 
  ar,1x1 + ar2x2 + .. + arpxp       ≥ cR 
and 
  wR ≤ xj ≤ Tupper   j = 1,2,…., p     52) 
 

where 
  fj(xj) = γj1 xj

2 + γj2 xj + …+ γjm  j = 1,2,…., p 
 
and γjk are known constants. Values for the constants aij, ci, γjk are available. 
 There are two types of second level coordination schemes are presented for the decentralized 
decision-making process. The first assumes knowledge of the local treatment cost functions by the 
regional authority while the second assumes no such knowledge. 



 
Pseudo-Decentralized Decision Process   For this type of decision process, we assumed that the 
regional authority, RA, has a complete knowledge of the local treatment cost function. The basis of the 
multi level scheme utilized in this section is duality in non linear programming and the saddle point 
concepts. The optimization problem represented by Equation (50)-(52) will be called the primal 
problem. This problem forms the Lagrangian function L(X, λ) for the primal problem as follows: 
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where  λi are Lagrange multipliers  j = 1,2, ..., r 
  
   λT = [λ1,λ2,…..λr] 
 
   XT = [x1,x2,…..xp] 
 
Lets define a dual function G(λ) as follows: 
 

                    G(λ) = min L(X, λ)       (54) 
 

where 
 

  S = {wR ≤ xi ≤ Tupper  i = 1, 2, …, p } 
 

Then the dual function G(λ) is defined over the domain D, where 
 

  D = {λ ; λ ≥0: G(λ) exists } 
 

Since, for all λ ≥ 0, L(X, λ) is continuous in X for all X∈S, and S is closed and bounded, by the 
Weierstrass theorem, G(λ) exists. Thus 
 
                         D = {λ ; λ ≥ 0} 
Suppose 
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And the dual problem can be written as 
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       (55) 

The Lagrangian L(X, λ) possesses a saddle point at (X0, λ0) if and only if X0 solves the primal problem 
and λ0 solves the dual problem. Thus 
 

                         F(X0) = G(λ0)       (56) 
 

 This preceding argument suggest that it is possible to decompose the problem into 
subsystem, solve them to obtain the firs-level solution, and coordinate these subsystems by choosing 
the multipliers, λ, to solve the dual for the second-level solutions so that their combined solutions solve 
the primal. The coordinator will have the task of maximizing G, subject to λD, If the Lagrangian L(X, λ) 
of the primal problem is separable  in X. 
 Since each fj(xj) is a function of a single variable  xj and the coefficient terms λi are linear, L(X, 
λ)  is readily decomposed into p independent subsystems         
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where 
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and 
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Note that : for this case L(X, λ)  additively separable with respect to xjs and L0 (λ) is a function  of λ only, 
and is taken care of at the second level. 
 The outline of multilevel structure of the optimization problem is depicted by Figure 4. From 
the figure we see that at the first level, λ is assumed to be known. This means that  the first level 
optimization consists the procedure of obtaining xj(λ) which minimizes the corresponding jth subsystem 
Lagrangian , Lj, subject to wR  ≤  xj  ≤  Tupper 
 G(λ) is evaluated at the second level, with known values of xj(λ)’s from the first level. The new 
multipliers λ are chosen so that  G(λ) is increased. The same procedure is repeated until G(λ)is 
maximized. (X0, λ0) is the optimal solution to the system, if, upon termination of the procedure, λº solves 
the dual and some Xº is primal feasible. It  can be also noted that in this case the primal value is the 
same as the dual’s.  
     
 
Second level                                          Max G(λ) 
                                                                  λ  ≥ 0 
 
 
 
 
 
 
                        λ  x1                λ         x2              λ           xp 
 
 
 
 
 
 
 
First              Min L1(x1,λ)                   Min L2(x2,λ)                 Min Lp(xp,λ) 
level            wR ≤ x1 ≤ Tupper             wR ≤ x2 ≤ Tupper   . . . .   wR ≤ xp ≤ Tupper 
 
 

Figure 4. The two-level optimization structure 
 
 For general classes of problems, the existence of a saddle point cannot be guaranteed. But, 
problems with convex objective and constraint functions under generous conditions must have a saddle 
point.  
 
Computational algorithm and Economic interpretation of the level procedure 

1. Set k = 0. Choose initial values λ(k) > 0. Set k = 1, go to Step 2 
2. Solve the first level with λ = λ(k), obtaining a solution  X(λ(k)) subject to wR ≤ X ≤ Tupper 
3. Form the dual function  G(λ(k)) = (X(λ(k)), λ(k)) by adding the first level sub Lagrangians and 

L0(λ).Calculate the gradient ( )( )kG λλ∇ whose elements are 
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4. Define a direction of search dk by 
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            Choose a new vector λ(k +1) by 
  

   λ(k + 1)  =  λ(k) + tk  d(k)       (58) 
where 
   d(k) = [di

(k),d2
(k),…..,dr

(k)] 
 

The step size tk is selected so that it maximizes G(λ(k) + tk d(k)) subject to tk  ≥ 0 and λ(k+1) ≥ 0. For this 
selection  of optimal tk , a Fibonacci-Search technique can be employed. 

 
5. If G(λ(k+1))-G(λ(k)) <`ε (i.e., the convergence is achieved) then stop. Else, set k = k +1 and 

return to Step 2. 
 
  An interesting economic interpretation will come to existence when we use the gradient 
algorithm in the two-level optimization procedure. The economic interpretation of first-level subsystems 
is that it represents the costs to each local polluter. While the social total cost of river basin-wide 
regional authority (RA) was the second level economic interpretation. 
 The local polluter have to plan their treatment levels (xj’s), minimizing their costs and report 
them to the RA according to the λ* announced by the RA. After responses is given by the local polluter, 
the RA forms the dual function which is the sum of the first –level minimum : 
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The gradient component of G at λ* is given by 
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which are actually the slacks of the inequality constraints Eq (31) and may be viewed as excess 
demands for oxygen in each reach. By step 4 , the gradient algorithm requires that λi

* be increased if 
excess demand is positive and decreased otherwise, unless λi

* = 0 .This is a familiar price-adjustment 
rule of fundamental economics. Thus, upon solving the second level, the RA has a new measure of the 
economic value (marginal cost) associated with supplying the ith reach with an additional pound of 
oxygen per day. These are the Lagrange multipliers λi. Note that λi

* are non-negative and that, for those 
constraints they are binding, they are positive. 
 Each local polluter’s has the problem of the following form 
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The term ( ) pjaxf
r
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=
λ in Eq (36) can be viewed as the cost, for which the jth polluter is 

responsible, in abating the chemical pollution. This interpretation comes from the fact that aij = dij 
represents the oxygen demand in reach i to meet the untreated waste effluent load incurred by the jth 

polluter, the term .
1

ij
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λ Hence, the ij
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λ  is the tax (effluent charges) imposed by the RA for the 

pollution caused by the jth polluter. Each polluter can determine whether to pay the specified tax by the 



regional authority for causing the degradation of the quality of chemical or to invest his money in 
developing a local waste water treatment plant to decrease his taxes. 

 
Computational analysis Computational analysis is summarized as follows: 
1. The iteration started with initial Lagrange multipliers, λ1,  λ1, …, λr-1 = 0 and λ5 is finite number less 

then ten. 
2. The slow convergence after a few rapid initial iterations is characteristics of the steepest descent 

method used. Other accelerated gradient methods are recommended for practical calculations. In 
particular, since the dual problem is quadratic in the Lagrange multipliers, the gradient methods of 
Fletcher and Powell, and Fletcher and Reeves, applied at the second level would find the optimal 
solution in fewer iterations 

3. There does not exist a standard programmed code for the multilevel approach and one must 
program one’s own for each problem. However, since the whole problem is decomposed into 
subsystems, programming logic is quite simple and easy to “debug” 

 
Complete Decentralized Decision Process     In forming this model, it is assumed that the regional 
authority has no knowledge of the local treatment cost functions, fj(xj), j = 1, 2, …, p and this situation 
often arises when private industries are not interested in releasing proprietary information regarding 
their industrial processes. 
 Now, as as in the preceding section, let us form the system Lagrangian L(X, λ) as 
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and may be rearranged to yield 
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Taking summations over j, we have: 
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An appropriate grouping of terms can be applied to the Subsystem Lagrangians, Lj(xj, λ), thus we have  
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where  
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In the last equation (39), the jth user views the Lj(xj, λ)s as the performance function to be minimized by 
him at the first level. 
 
Computational algorithm The computational procedure for is described in Fig 5. The algorithm is 
essentially a steepest ascent description of the law of supply and demand. The following gives an 
outline of the computational procedure. 
 The Regional Authority (second level) initially specifies zero tax rates, i.e., λi = 0, for all i 
chemical processing unit. The p discharges respond at the first level with the minimum level of 100wR 
% removal of BOD. The RA receives this information and checks the r constraints for violations by 
substituting the first level, minimizing values of xj into the constraint set. If some violations occur and 
finite related components of the tax vector λ are increased, using step size option No 2 and transmitted 
to  the first level of the second iteration. 
The tax for each chemical processing unit is affected by the total vector of tax rates. All upstream 
decisions will be affected by a single increase associated with the last (rth) reach. Hence, a number 
changes should bring about a dramatic response. This occurs while some dischargers respond with 



near-maximum levels of treatment efficiency, and the constraints are satisfied. The taxes thus 
decreased because feasibility has been reached. The Computational procedure can be outlined by the 
following algorithm (See Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 5.  Computational Procedure 
 
The above algorithm can be outlined as follows. By examining the constraint slacks for each  i 
Determine reach l which is the closest to violate the constraints so that the absolute values of hls is less 
than that of his, i.e., 
 

  l =  i    so that        |hl|  <  |hi|                 for all i    (67) 
where 
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Then reduce the tax rate at the kth reach to zero : 
 

ALL λi hj  = 0 converged 

Initialize the tax rates λ 

Calculate the constraints slack 
h = c – AX , where A = [ aij ] 

Calculate the optimal xj 
(in the first-level) 

 

Stepsize options for “Δ”: 
1. Select “Δ” so that no single satisfied constraint is violated 
2. To quickly attain the feasible region, rapid increase should be made 
3. If a violation occurs, then take a recovery step which is a fraction of the 

previous step. 
4. Selectively increase the accompanying tax rate, while do the recovery 

steps. If this option is taken then one may find the single constraint that 
becomes feasible last. 

5. Choose “Δ” using the magnitude of the constraint as an indicator of the 
step size, if only one constraint-multiplier product is nonzero  

             λnew  = λold + Δ h 



  λk (new) = λk(old) + Δhk = 0       (69) 
 
This condition is enforced by solving for the unknown stepsize : 
 
   x = -λk(old)/hk        (70) 
 
This is the essence of step size option No. 1 in Fig. 5. New tax rates are calculated and transmitted to 
the first level, which then respond with new treatment levels. 
  
 The second level (RA) checks for new violations: however, at this iteration, none exist. The 
convergence criterion that all λihi products be zero is next checked. There are now some finite nonzero 
λihi products. Since the constraints are satisfied, option 1 is used again. Furthermore, this procedure of 
forcing tax rate components to zero is successfully repeated until less nonzero products remain when 
the constraints are again violated. Recovery steps (option No. 3 ) are made until the critical constraint 
(i.e., the constraint that upon recovery steps is the last to become feasible) is found to be the twelfth 
.This tax rate is then selectively raised (option No. 4). The constraints are once again satisfied and the 
algorithm attempts to force all λihi products to zero. Finally, there is only one nonzero product 
remaining. The tax rate is then fine-tuned (option No. 5) by considering the constraint magnitude which 
is being driven to zero. 
 
Computational analysis. The following observations can be made concerning the computational 
procedure. 
1. The optimal treatment efficiencies are the least sensitive factors in the model. 
2. The level of taxing is of median sensitivity and was chosen for the stopping criteria 
     (as λihi = 0). 
3. It would have been better to enter the feasible region less vigorously. This might save 
    many iterations. 
4. Selective increase of a single tax should have been a higher magnitude to reduce    
    repeated increases of the same tax component. 
5. The most difficult task was to select the step sizes for the different step size options. 
 
4. THREE-LEVEL STRUCTURE OF CHEMICAL PROCESSING SYSTEM 
In the previous section we have discussed the two-level structure and the capacity of the regional 
system is not considered as a variable to be optimized. This is the reason why we extend this two-level 
structure of optimization to the three-level structure. Thus, we can state the new regional problem as 
follows. Find an optimal processing configuration for meeting the quality standards of products 
considering the possibility of a regional waste treatment plant, while simultaneously determining the 
pollution taxes to achieve this configuration when the Regional Authority does not necessarily know the 
treatment cost. 
 In this section we will not repeat the detailed mathematical formulation developed in previous 
section here because the three-level hierarchy can be constructed with only a minor extension. Again 
the chemical processing system is decomposed into n subsystem and the water system of the river is 
decomposed into r reaches. In the water system, at the head of each reach is an effluent discharge 
from a polluter or change in the hydraulic characteristic of the river, such as turbidity, surface area 
exposure or the inflow of tributary. 
 
Solution Procedure  We have assumed that the Regional Authority does not necessarily know the 
treatment cost functions of the chemical processing plants (the individual polluters), the optimization 
problem must decomposed into sub-problems in order to facilitate its solution. 
In this case The Dantzig-Wolfe decomposition cannot be applied because the optimal taxing structure, 
the optimal regional plant size and regional treatment level must also be determined. 



When we apply the hierarchical multi level approach, the overall optimization problem must be 
decomposed into a set of hierarchically ordered sub-problems and the solution of this sub-problems are 
then coordinated so as to obtain an optimal solution to the original problem. 
Any optimization technique may be used in this level because there is no restriction as to how the sub-
problems at the first-level can be solved. In this approach, the second and the third-level controller must 
be chosen more carefully.  

Three levels approach of optimization are introduced for the solution of the regional problem. 
Individual polluters or chemical processing plants are at the first level. Regional treatment plant is at the 
second level, while the third level is occupied by Regional Authority. Figure 6 illustrates how the 
decomposition works, how the information exchanged between levels and how this information is 
updated and coordinated so that the optimal solution to the problem is obtained. 
  The function of Regional Authority ( third level function’s) is to propose a tax structure to the 
lower levels and this tax structure is based on marginal cost to society of adding an additional kilogram 
of waste chemical (for chemical processing plant) or adding additional kilogram of dissolved oxygen 
into each reach of the river (for water resource system). The marginal cost are the Lagrange multipliers, 
i.e., the shadow prices of the binding constraints of the overall optimization problem. It means that if a 
constraint is not binding, i.e., there is no excess of waste chemical to the regional plant (for chemical 
processing plant) or there is a excess of dissolved oxygen in that reach (for water resource system), 
there is no tax on the reach. For water resource system, the BOD load discharged untreated by the 
regional plant is taxed in the same manner as the local plants are charged. The solution process is 
initiated by the Regional Authority by estimating all of the shadow prices and then determines tax 
structure based on these shadow prices. The obtained tax structure is then sent down to the lower 
levels for processing and it will be discussed later in this paper. This tax structure is processed by the 
lower levels and the results are passed back up to the Regional Authority as optimal treatment levels. 
These treatment levels is used by Regional Authority to check the river or the effluent of the treatment 
plant quality constraints to determine whether the previous taxing structure was too high, i.e., there is 
no binding constraints, too low where some constraints are violated, or optimal that is no constraints 
are violated but some constraints binding. The new tax structure must be developed if the previous tax 
structure is not optimal. The development of the new tax structure must be based on the previous tax 
structure. For this problem, the new tax structure is updated by a gradient search technique using 
updated step sizes to converge toward the optimal solution. (see for example Reference No. 7). 
The second level function is to determine an optimal regional plant treatment level and optimal regional 
plant size., and to issue charges based on the regional treatment cost to the polluter (chemical 
processing plant). 
 The second level assumes a given regional plant size based on the prediction of which 
chemical processing plants or polluters ship their waste water or waste chemical to the regional plant. 
This action is taken based on the given tax on the regional plant which is determined by the third level. 
The second level then computes an optimal regional treatment level and results on the regional 
treatment cost. The regional treatment cost is then divided among the chemical processing plants (the 
polluters) assumed to shipping their wastewater or waste chemicals to the regional plant on the basis of 
the total wastewater or waste chemicals shipped. The tax on the regional plant is divided among the 
chemical processing plants assumed to be using the regional facilities on the basis of BOD and COD 
load  shipped to the regional plant. This cost information is then sent down to the first level and the first 
level then uses this additional information to determine which chemical processing plants (polluters) 
actually would ship their waste to the regional plant. The information is then returned to the second 
level where the process stops and all information is passed up to the third level. This process of 
returned information to the second level occurs if the previous prediction of which the chemical 
processing plant (polluters) will ship to the regional plant is correct. But, if the previous prediction is not 
correct or if the difference is greater then a specified tolerated error, the prediction is updated on the 
basis of the result obtained. The new regional plant size is determined, also a new optional regional 
treatment cost is calculated and the process is repeated until the predicted plant size and the actual 



number of chemical processing plants who do the ship agree. In this case, the predicted plant size is 
the prediction when chemical processing plant will ship. 
 
 
 
 

 
Third level                                         Central Authority 
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                        User 1 or                        User i or                            User nor 
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Figure 6. Three-level structure 
 

 In this problem, the routine to be used to update the prediction of the regional plant size is a 
modified Gauss-Siedel routine. The optimization problem at the first level was solved by satisfying the 
Kuhn-Tucker condition for stationary. The treatment level determined in this manner was not allowed to 
violate the treatment level constraints. 

To determine the optimal treatment cost for each chemical processing plant, is the first-level 
optimization function and it involves determining whether or not to ship to the regional plant and what is 
the optimal local treatment level. Thus, the optimal treatment cost policy can be determined by solving 
the following minimization problem. 
 
  Min(cost of local treatment + local tax + cost of regional treatment +  
           cost of piping to regional plant + regional tax)      (71) 
 
Assuming that the waste is treated at the local plant to each chemical processing plant, the first level 
determines optimal local treatment level. This occurs if a given regional treatment cost and the regional 
tax is determined by the second level while a local tax is determined by the third level. Upon using this 
treatment level, the local treatment cost and local tax are computed for each chemical processing plant. 
This local cost is then compared to the cost of regional waste treatment for each plant. The most 
economical treatment method is selected and the resulting information  is passed back up to the higher 
levels. Figure 6 illustrates the three-level optimization technique in solving this kind of problem. This 
three level approach can be expanded to include several regional treatment plans. 
 
5. CONCLUSION 
In practice, chemical processing system is a large scale industrial problem and it has been 
decomposed into subsystems and then optimized empirically or using rigorous mathematical base. In 



two-level approach, the responsibility for the engineering of each subsystems is assigned to the 
individual engineering groups which is called first-level. The groups of the first level are only 
responsible for the design of their subsystem and they need not directly concern themselves with the 
sign of any other groups. The responsibility of for the overall system behavior is the responsibility of the 
coordinating group. This second-level group is divorced from the need of considering the details of the 
subsystems. They are charged only for assuring the cooperation between other groups in the first-level 
in achieving the system goal. 

The two-level optimization scheme as discussed in Sec 3 can be extended to include three or 
more levels of optimization. In waste water treatment system, the user, i.e., the polluters such as 
chemical processing plant etc, is offered the options: (1) to treat his effluent locally, or (2) to ship it to 
the co-op treatment plant or (3) to ship it to a regional treatment plant. And three-level optimization 
discussed in Sec 4 is used for this extension. 
 The hierarchical approach via the three-level optimization scheme provides an important tool 
in chemical quality as well as water quality management in chemical processing system, whether in the 
stage of planning and design, operation or development. Since the chemical processing problems are 
hierarchical in their nature, mathematical models constructed to represent these problems should have 
the same structure. By providing the suitable coordination scheme among the subsystems in the 
hierarchy, the multi-level approach can handle such hierarchical models. This, however, makes the 
approach desirable and tractable.  
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