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Advanced oxidation processes (AOP) are rapidly gaining importance for the degradation of minute 
concentrations (ppb to ppm range) of chemical and biological pollutants [1-5]. These technologies as the 
name suggests are primarily involved in the oxidation of pollutants utilizing a highly non-selective and 
reactive oxidant hydroxyl radical. However hydroxyl radical isn't the only reactive species produced in 
advanced oxidation processes. The generation of molecular species such as hydrogen peroxide, 
hydrogen, oxygen, other oxidative species such as hydroperoxyl radical and reductive species such as 
hydrogen radical, superoxide radical anion and aqueous electrons (in some processes) have also been 
documented [6-9]. The presence of reductive species in a highly oxidizing environment offers the 
possibility that in mixture of aqueous contaminants some pollutants or a component of certain pollutants 
degrade by reductive mechanisms. Some of the earlier work has demonstrates the role of reductive 
species in the degradation of compounds with high electron affinity, primarily chlorinated compounds 
and compounds containing nitro groups [10-12]. The reactive species associated with reductive 
degradation are different in different AOP's. Modified Fenton's process produces superoxide radical 
anion that causes degradation of carbon tetrachloride while the species responsible for a component of 
DNT degradation in photolytic ozonation (O3/UV) system is ethanol radical, a reductive species formed 
on reaction of ethanol with hydroxyl radical [10,12]. Radiation and photo-catalytic studies have 
quantified reductive species such as superoxide radical anion by the use of selective probes such as 
tetranitromethane (TNM), nitroblue tetrazolium chloride (NBT) and ferricytochrome c [13-16]. 
Sonochemical studies have shown an increase in phenol degradation when carbon tetrachloride was used 
as a scavenger of the hydrogen atom [11]. Pulsed electrical discharge is a form of AOP in which high 
voltage electrical discharge is used to degrade pollutants by production of various reactive species in the 
liquid and gaseous phase [17-19]. The efficacy of this technology in degrading a wide spectrum of 
chemical and biological contaminants has been demonstrated 20-23]. The production of the following 
reactive species due to aqueous phase discharges has been demonstrated: hydroxyl radicals, hydrogen 
radical, oxygen radical (using emission spectroscopy), hydrogen peroxide (chemical methods), hydrogen 
and oxygen (GC-TCD)[24-26]. This work focuses on quantification of reductive species formed due to 
generation of pulsed electrical discharge in water. The motivation behind this work are previous studies 
that show hydroxyl radical attack alone can't account for TCE degradation observed due to pulsed 
electrical discharges (i.e. non-hydroxyl radical particularly reductive mechanisms might be responsible) 
and the quantification of hydrogen and oxygen gas which can account for the considerable production 
rate of hydrogen radical and superoxide radical anion respectively[26,27]. The likely reductive species 
produced by pulsed electrical discharge are hydrogen radical and superoxide radical anion since the 
generation of aqueous electrons hasn't been demonstrated. Two probes tetranitromethane (TNM) and 
nitroblue tetrazolium chloride (NBT) are to qualitatively and quantitatively demonstrate the production 
of reductive species. Competition experiments between the probe compounds are conducted to 
demonstrate qualitatively the production of reductive species. Experiments are conducted to understand 
the role of various parameters such as: concentration of probes, applied voltage, initial solution 
conductivity, and the initial solution pH on the production of reductive species.  
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