230b Dendrimer-Ceramic Nanocomposite Membranes for Voc Recovery

Sukjoon Yoo, Robert L. Sherman, Daniel F. Shantz, Eric E. Simanek, and David M. Ford
The focus of this research is the synthesis and evaluation of organic/inorganic composite membranes for
the selective removal of volatile organic compounds (VOCs) from air streams. Using mesoporous
alumina membranes with pore sizes ranging from 2 to 200 nm as supports, various triazine-based
dendritic molecules were grown in a covalent manner from the porous surfaces to create the
nanocomposites. The organic portion of the composite may be varied by increasing the number of
generations of the dendrimer grown on the surface, by varying the length and functionality of the
dendrimer terminating groups, and by using different spacer groups between triazine branches. The
effects of these material variables on the permselectivity of the membranes was explored. In some cases,
highly solubility-selective composite membranes were synthesized.