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Abstract 

 
   Numerical solutions have been carried out for representative conditions in a tubular reactor in fully 
developed laminar and turbulent flow. The computations take into account the radial transport of both 
species and energy by molecular and turbulent fluctuations for energetic reactions and for heat exchange 
with the surroundings. The results reveal that finite radial rates of transport of species and energy by 
molecular diffusion, and in turbulent flow by eddy diffusion as well, do affect the mixed-mean 
conversion significantly for many practical conditions.  Although the numerical solutions of the models 
are essentially exact, some idealizations such as invariant physical properties and a rate mechanism in 
terms of concentration have been made in the interests of generality.  The numerical results are limited 
to a single first-order irreversible equimolar reaction, but the methodology can readily be extended to 
other reacting systems. The results differ from all previous ones in that an essentially exact model is 
utilized for turbulent flow and transport. Correlative equations based on asymptotic behavior are devised 
for the primary effects of the thermal parameters.  
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Introduction         

   Process designers do not questions the utility of generalized predictive and correlative expressions for 
convection, for example of Nu as a function of Re and Pr or the justifiability of the postulate of invariant 
physical properties, nor do they question the need to impose idealized conditions, for example fully 
developed flow and convection and uniform heating or a uniform wall temperature, in order to obtain 
generalized solutions and correlations. The associated deviations from exactness and physical reality are 
not overlooked, but rather are recognized as the price of insight and generality. 
 
   Reaction engineering has followed a different path. Complex reaction mechanisms, stirred vessels, and 
packed-bed catalytic reactors have received great attention, but fluid-mechanical, radial diffusion, and 
thermal effects in tubular reactors have been rather neglected in an analytical and a correlative sense. 
Indeed, most of the canonical solutions in the literature for homogeneous chemical conversions in 
tubular flow are for a single reaction carried out isothermally and invoke the physically non-existent 
condition of “plug flow”.   The obvious reasons for these extreme idealizations include the complexity 
associated with (a) the radial velocity distribution, (b) the exponential dependence of the rate constant on 
temperature, (c) the non-linearity arising from multiple, coupled reaction mechanisms, and (d) multiple 
empirical parameters such as the frequency factor, the energy of activation, and the heat of reaction for 
each reaction mechanism.  
 
  In previous related work, Churchill1, 2 developed both general and asymptotic analytical solutions for 
the upper bounding conversion, corresponding to perfect radial mixing, and the lower bounding 
conversion, corresponding to negligible radial mixing, in both fully developed laminar flow and fully 
developed turbulent flow, and for both energetic and non-energetic reactions. Churchill et al.3 

subsequently carried out numerical solutions to test these expressions. The primary, unexpected finding 
of that work is of several invariances. These invariances not only suggest that generalizations are 
possible for both non-energetic and energetic reactions in tubular flow, but also give some guidance to 



their development. A second unrelated finding is that exact numerical solutions taking into account 
finite radial transport and energetic effects are not only upon feasible, but within the existing skills of 
undergraduate students and most practicing engineers.  
 
  In all of the analytical and numerical solutions described by Churchill and coworkers1,2, 3, the behavior 
was one-dimensional and the models were in the form of ordinary differential equations. In the current 
work, exact numerical solutions have carried out for representative conditions in fully developed laminar 
and turbulent flow that take into account the radial transport of both species and energy by both 
molecular and turbulent fluctuations in both weakly and strongly energetic reactions and with heat 
exchange to the surroundings. The models thereby consist of coupled partial differential equations. The 
numerical results are limited to a single first-order irreversible equimolar reaction, but the methodology 
is readily extended to other reacting systems. The results differ from all previous ones in that an 
essentially exact model is utilized for turbulent flow and transport.  
 
   Because of the many dimensionless variables and parameters and the lack of a theoretical structure, 
the development of generalized algebraic, correlative, and predictive equations such as those that have 
been devised for pure convection, was considered in advance to be very difficult if not impossible. 
Accordingly, the objective of correlation, but not of computation, was reduced to the determination of 
sensitivity coefficients for the first-order effects on the mixed-mean conversion of the heat of reaction, 
the energy of activation, the frequency factor of the reaction, the Reynolds number, and an imposed heat 
flux density or fixed temperature of  the wall. 
 
Prior Work 
 
   Cleland and Wilhelm4, in a truly pioneering work, carried out numerical calculations for the effect of 
molecular diffusion on the conversion for a first-order, equimolar, irreversible reaction in the laminar 
regime of flow at constant density and temperature for a series of values of Df/ka2 ranging from 0 to ∞ 
and of kx/2um ranging from 0 to 2.0, and concluded that diffusion was significant (which they defined as 
a decrease of greater than 1% in the conversion) for (x/a)/ScRe < 5 x 10-4. They further concluded from 
this result that radial diffusion is ordinarily negligible for liquids but may not be for gases in tubes of 
small diameter. Additionally, they carried out experimental work for a pseudo first-order liquid-phase 
reaction (the hydrolysis of acetic hydride in aqueous solution) and measured conversions corresponding 
to slightly higher rates of diffusion than those predicted. The discrepancies that they observed were 
attributed primarily to natural convection generated by temperature and concentration differences 
corresponding to a maximum Grashof number of 3700.  
 
          Finlayson and Rosendoll5 recently devised a computer code called CRDT  (Chemical Reactor 
Design Tool)  for student use in carrying out numerical calculations for tubular reactors, and presented 
some illustrative results based on a crude model  for the effects of turbulence. Ekambara and Joshi6 
recently reviewed previous work for the effects of axial mixing in a reactor in fully developed laminar 
flow and proposed a new model, but their illustrative calculations are for non-reacting conditions. The 
models of Fox7 include molecular and turbulent diffusion but are for homogeneous turbulence.  
 
          These prior calculations, although pioneering in character, are fragmentary and the theoretically 
based ones for the turbulent regime are based on out-dated or overly simplified models. The current 
work is intended to correct the latter two deficiencies. It does share two formidable problems with the 
earlier work. The first is the very large number of parameters. The second is the lack of a theoretical 
structure for correlation such as that provided for convection by the analogy between momentum, heat, 
and mass transfer. 
 



Simplifications and Idealizations  
 
   In order to confine the calculations within reasonable limits as well as to assist in their generalization, 
several simplifications and idealizations were made. 
 
   The primary simplification is the limitation to a single, first-order, equimolar, irreversible reaction. 
Such simple, isolated reactions occur physically although most important chemical processes involve 
multiple and coupled reactions, including reversible ones of different orders. The results for the 
idealized reaction mechanism of the current analysis should be interpreted as a necessary first step in 
terms of modeling, numerical calculations, and correlation. In addition, they can be expected to provide 
a guideline for interpretation of the effects of other variables. Attention is also limited to flow though a 
round tube, a process that is, however, one of the most common in practice.  
 
   The principal idealizations in the modeling itself consist of the postulates of invariant physical 
properties other than the effect of temperature on the reaction-rate constant, fully developed flow, and 
negligible diffusion in the direction of flow. The postulate of invariant density eliminates buoyancy and 
thereby natural convection, which may be significant with gases in horizontal tubes. It also avoids 
changes in the local velocity field, which are apt to be significant with gases in non-isothermal and/or 
non-equimolar flow. The postulates of invariant viscosity, thermal conductivity, and diffusivity are of 
lesser significance, and may be compensated for to some extent by the use of mean values. The postulate 
of invariant physical properties and the associated use of mean values are almost universal practices in 
fluid mechanics and transport in the interests of generalization as well as of simplification; the 
consideration of variable properties restricts the results to a particular fluid and reaction and effectively 
precludes a generalized correlation for all fluids and reactants. The condition of fully developed flow is 
only approached some distance from the inlet to the reactor, and that distance depends on the inlet 
configuration and the rate of flow. This idealization is also an almost universal one in thermal 
convection but its applicability to a tubular reactor depends critically upon the rate of reaction relative to 
the rate of flow. The postulate of negligible longitudinal diffusion of energy and species has been shown 
in many prior investigations of both convection and reaction to be a valid one for most practical 
purposes. In turbulent flow, the transient fluctuations in the components of the velocity and hereby in 
temperature and composition, affect the reaction-rate constant. However Glassman 8 has, on the basis of 
a semi-theoretical model, concluded that this effect is negligible except possibly for gas-phase reactions 
at very high temperature.   
  
Mathematical Models  
 
 Laminar Flow. For laminar flow and subject to the idealizations mentioned above, the equation of 
conservation for species A can be written in dimensionless form as follows:  
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The associated expression for the conservation of energy is 
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(See the Notation for the definitions of the symbols in eqs.1 and 2.) 
 
   This particular choice of dimensionless variables and parameters is arbitrary and was chosen primarily 
for comparisons with previous computations in which diffusion of species A and energy were neglected. 
The dependence of the rate of reaction on temperature according to the Arrhenius equation is implicit in 
eqs.1 and 2. 



 
   The boundary conditions for eq.1 are Z= 0 at X= 0 and ∂Z/∂R = 0 at R = 0 and R = 1. Those for eq.2 
are Φ =1 at X = 0, ∂Φ/∂R = 0 at R = 0, and Φ = Tw/T0 (for an isothermal wall) or ∂Φ/∂R = jwa/kT0 (for a 
uniformly heated wall) at R = 1. These latter two thermal boundary conditions, although arbitrary., are 
almost universal ones in theoretical analyses for convection because of their simplicity and in practice 
because of their physical attainability. The same reasons apply for combined reaction and convection. 
 
   Turbulent Flow. Formulations for turbulent flow analogous to eqs.1 and 2 are    
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and 
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   The boundary conditions are unchanged but supplementary expressions for ( ) ++
''vu , u+, and +

mu  are 
necessary. The expressions used herein are those devised by Churchill 9, namely
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   The boundary condition for eq. 6 is u+ =0 at R = 1, and for Eq. 7 is +
mu  = 0 at R = 0. Equations 6 and 7 

are independent of eqs.3 and 4 and can be solved numerically in advance. Furthermore, the theoretically 
based correlative equation                
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can be used to predict the computed values of +
mu  ≡ u(ρ/τw)1/2 almost exactly, thereby precluding the 

necessity for numerical solution of eq. 7. Re can be evaluated from eq. 8 for a specified value of a+ ≡ 
a(ρτw)1/2/ μ) by virtue of Re = 2 +

mu a+. 
 
   Functional Representations. Considerable insight can be gained from the above model simply by 
identifying the corresponding functional relationships The mixed-mean conversion and dimensionless 
temperature at any dimensionless distance X = k0x/um  are obtained by integrating the local values, 
weighted by the velocity distribution, over the cross-section. Only mixed-mean values, as designated by 
Zm and Φm, are considered hereafter. The mixed-mean dimensionless temperature, Φm is usually replaced 
by its exact equivalent, Nu, which for uniform heating is equal to 2ajw/λ(Tw-Tm) = 2ajw/λT0(Φw-Φm) , and 
for a uniform wall-temperature to 2(∂T/∂R)R=1/(Tm –Tw) = 2(∂Φ/∂R)R=1/(Φm –Φw). 
  It follows from eqs. 1 and 2, together with the thermal boundary conditions, that in terms of the 
individual variables, 
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or, in terms of named or herein-defined dimensionless variables, 
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   The groupings aumρ/μ in eq.9 and Re in eq.10 drop out for laminar flow; jwa/λT0, and Tw/T0  in eq. 9 
and  J and Tw/T0  in eq. 10 drop out for adiabatic flow;  and  qr/CMT0  and E/ R̂ T0 in eq. 9 and Q and 
E/ R̂ T0 in eq. 10 drop out as well for isothermal flow.     
 
  Supplemental expressions.  Expressions such as the following for the turbulent Prandtl and Schmidt 
numbers and the reaction rate constant are arbitrary but essential components of the model:  
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    Equations 11 and 12 are purely empirical but have been shown to provide generally reliable 
approximations for forced convection (see Churchill and Zajic10). They no not alter eqs.9 and10. The 
Arrhenius equation (the first two terms of eq.13) has a semi-theoretical basis and provides an excellent 
representation for most reactions. Its expression in terms of k0 is convenient herein because of the use of 
isothermal reaction at the inlet temperature as a reference state. Equation 13, in terms of T0, was 
incorporated implicitly in eqs. 1 – 4, and thereby is also accounted for in eqs. 9 and 10. 
 
   Parametric Values for the Numerical Solutions. For the calculations, one constant and one 
condition were arbitrarily fixed, namely: k∞ = 5.605 x 108 s-1 (here k is in s-1 and T in K) and T0 = 300 K. 
In addition, fixed numerical values were specified for four dimensionless groups, namely: Pr = 0.7, for 
which Prt = 0.871; Sc = 0.2, for which Sct = 0.925; k0 a/um = 0.096, and E/ R̂ T0 = 17.815, for which 
E/ R̂  = 5344.5 K and k0 = 10.28 s-1.  
 
   These choices are intended to be representative for gaseous reactions at moderate temperatures. In 
addition Re was chosen as 400 for laminar flow and 37,640 for turbulent flow. The latter value 
corresponds to a+ =1000. This value of 1000 was chosen because it is the lower limit of almost exact 
predictions by eq. 8, although a lower value of say a+ =200 would be more representative of tubular 
chemical reactors in the turbulent regime.  
 
   These specifications leave only two parameters for which numerical values need to be chosen, namely 
Q ≡ qr/cM T0, which is a measure of the thermicity of the reaction, that is the change in temperature due 
to the heat of reaction, and Tw/T0  or J ≡ jwa/λT0, which characterize external heating or cooling with a 
uniform wall temperature or a uniform heat flux density, respectively. Calculations were carried out for 
the following numerical values:  
               Q        0, ±0.005, ± 0.01, and ± 0.05  
            Tw/T0     0.8, 0.9, 1.0, 1.1, and 1.2  
              J           0, ± 0.01, ± 0.05, ± 0.10, ± 0.15, and ±0.20 for laminar flow 



              J           0, ± 5, and ± 10 for turbulent flow 
 
   The higher values of J for the turbulent regime were required to perturb the conversion by the same 
order of magnitude as those for laminar regime because of the nearly 100 times greater rate of flow. 
(This expediency could have been avoided by specifying the numerical values of the uniform heat flux 
density at the wall in terms of a grouping such as jwx/aumρcT0 that incorporates the mean velocity.) 
 
Numerical Calculations 
 
   The two-dimensional numerical integrations were carried out using a second-order, central-divided-
difference scheme. They converged satisfactorily and the numerical error due to discretization and 
round-off is concluded to be insignificant. 
 
   Although results for heat transfer itself are not presented here, the close agreement of the computed 
Nusselt numbers for asymptotically large values of X with the theoretical values for pure convection in 
the laminar regime and with the previously computed values of Churchill et al.3 for pure convection in 
the turbulent regime is a further assurance of the accuracy of the numerical calculations, at least in a 
thermal sense. 
 
Numerical Results and Correlating Equations for Non-energetic Reactions  
 
   Presentation of the numerical results in their entirety, which encompass the radial distribution of the 
velocity, composition and temperature, is neither feasible nor essential. The challenge is instead to find 
efficient formats that reveal both qualitatively and quantitatively the diffusive and thermal effects of on 
the conversion. 
 
                                                             Table 1 
Computed Mixed-Mean Conversions for a First-order, Equimolar Irreversible Reaction                   
         in Fully Developed Isothermal Tubular Flow at k0a/um = 0.096 and Sc = 0.2 
                      Laminar Flow at Re = 400, Turbulent Flow at Re = 37650 

 
 
 
 
 
  
 
 
 
 
 
 
 
 

   Representative results for the effect of transport under isothermal conditions are shown in Table 1 in 
which the fractional mixed-mean conversion, Zm, is tabulated as a function of k0x/um for laminar and 
turbulent flow, with and without radial transport, as well as for perfect radial transport of composition 
and energy. (This latter terminology, which implies the physical existence of a limiting state as the 
diffusivity of species A increases indefinitely, is used herein rather than “plug flow”, a condition that 
does not occur with real fluids for any condition and is not approached in turbulent flow as Re 

k0x/um Laminar Flow 
No Diffusion  

Laminar Flow 
with Diffusion

Turbulent Flow 
  No Diffusion 

Turbulent Flow 
 with Diffusion  

Perfect Radial 
    Mixing 

  0.00         0.00000      0.00000       0.00000      0.00000     0.00000 
  0.20     0.16742      0.17522 0.17996      0.18054     0.18127 
  0.40     0.29611      0.31663 0.32631      0.32783     0.32968 
  0.60     0.39992      0.43273 0.44585      0.44826     0.45119 
  0.80     0.48453      0.52868 0.54370      0.54686     0.55067 
  1.00     0.55679      0.60820 0.62391      0.62764     0.63212 
  2.00     0.78062      0.84421 0.85535      0.85980     0.86466 
  3.00         0.88652      0.93803 0.94352      0.94692     0.95021 
  4.00         0.93973      0.97535 0.97768      0.97984     0.98168 
  5.00         0.96741      0.99019 0.99110      0.99234     0.99326 



increases.) In the interests of brevity, the tabulated values are limited to a few widely spaced values of 
k0x/um. In this form, which can be interpreted as corresponding either to the increase in mixed-mean 
conversion with length for a fixed volumetric rate of flow or to the effect of flow for a reactor of fixed 
length, the effects of both the velocity distribution and transport appear to be barely significant, although 
they clearly demonstrate the progressive increase in conversion from laminar flow without diffusion to 
laminar flow with diffusion to turbulent flow without diffusion to turbulent flow with diffusion to 
perfect radial mixing. It is worth noting that the perturbation due to the turbulent velocity distribution is 
greater than that due to the combination of molecular and eddy diffusion of species A. In Figure 1, in 
which curves corresponding to these cases are plotted as x/xmixed versus Zm, the differences are 
exaggerated relative to Table 1 and thereby easier to identify.  
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       Figure 1. Effects of Velocity Distribution and Diffusion 
 

   The differences between the various curves in Figure 1 illustrate the effects of momentum and species 
transfer by molecular and eddy diffusion as follows: 

a) The difference between Curves 1 and 2 represents the enhancement due to the radial molecular  
      diffusion of species A. 
b) The difference between Curves 1 and 3 represents the enhancement due to the turbulent velocity 

distribution relative to the laminar one, that is, due to momentum transfer by eddy diffusion.  
c) The difference between Curves 2 and 4 represents the enhancement due to the eddy diffusion of 

both momentum and species A.  
d) The difference between Curves 3 and 4 represents the enhancement due to the eddy diffusion of 

species A.  
e) The difference between Curves 2 and 5 represents the false enhancement associated with the 

postulate of perfect radial mixing relative to laminar flow with molecular diffusion, but can also 
be interpreted as the possible enhancement with an asymptotically large molecular diffusivity. 

f) The difference between Curves 4 and 5 represents the false enhancement associated with plug 
flow relative to turbulent flow at a+ = 1000 but also  the possible enhancement for an 
asymptotically large sum of the molecular and eddy diffusivities. 

 
   Curves for turbulent flow at lesser, and thereby more realistic values of a+

, would fall somewhat lower 
than Curves 2 and 4, that is, closer to the one for perfect radial mixing, but would never attain that limit. 
The results in Table 1 and Figure 1 are all in accordance with the assertion of Churchill1 that solutions 
for laminar flow without molecular diffusion constitute a lower (conservative) bound for the conversion 
and those for perfect radial mixing an upper (non-conservative) bound. While the differences are 



modest, the ease of numerical solution of the relatively exact equations of conservation suggests that the 
direct use of either of the bounding solutions in design or analysis can no longer be justified.   
 
  Representation of Dependence of Zm on k0x/um for Isothermal Conditions. The values of x/xmixed in 
Table 2 reveal the relative invariance of this ratio over a moderate range of k0x/um and Zm for both 
laminar and turbulent flow. This observation suggests that the theoretical dependence of the mixed-mean 
conversion, Zm, on k0x/um for complete radial mixing in isothermal flow, namely  
                                               Zm = 1- exp{- k0x/um}                                                       (14) 
might, with the incorporation of an arbitrary constant,  serve as a structural form for an expression for 
isothermal laminar flow with a finite diffusivity. It should be noted that the subscript denoting the 
mixed-mean in eq.14 and all subsequent expressions for the limiting asymptotic condition of perfect 
radial mixing is redundant because the conversion does not then vary with radius. It is, however, 
included here and throughout for consistency with expressions for a finite degree of radial mixing. One 
such possible modification of eq.14 for a finite degree of radial mixing is  
                                             Zm = 1- exp{- αk0x/um}                                                       (15) 
where α is an arbitrary coefficient. A value of α = 0.937 produces the predictions for laminar flow in 
Table 2, which are very accurate for fractional conversions of 0.3 or greater, and sufficiently accurate 
for most practical purposes even for lower conversions. The corresponding value of α for turbulent flow 
at a+ = 1000 is 0.988, and the corresponding predictions may be seen in Table 2 to be very accurate, 
even for low conversions. In view of the close correspondence of the computed and predicted values of 
the conversion for turbulent flow at a+ = 1000 and for laminar flow, the value of 0.988 for the arbitrary 
coefficient α for a+ = 1000 might be expected to be applicable for all values of a+ in the turbulent 
regime. It may be noted in passing that for finite radial mixing the values of x/xmixed in Table 2 increase 
monotonically with k0x/um for both laminar and turbulent flow with finite radial mixing just as they did 
for they did for no radial mixing (see Churchill1, Figures1and 2), but the increases and the differences 
between laminar and turbulent flow with diffusion are much less  
 
                                                                          Table 2 
             Predictions by Equation 15 of Mixed-Mean Conversion in Isothermal Flow with Diffusion 
                                         (Same general conditions as for Table 1) 
 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
 
 
 
. 
 

k∞x/um Zm,laminar 
Computed 

xlam/ xmixed 
Computed 

Zm,laminar 
Predicted 

 Zm,,turbulent 
Computed 

xturb/xmixed 
Computed 

Zm,,turbulent 
Predicted 

0.1 0.09266. 1.02840 0.08944 0.09489 1.00302 0.09408 
0.2 0.17522 1.03821 0.17089 0.18054 1.00447 0.17930 
0.3 0.24950 1.04524 0.24505 0.25790 1.00580 0.25651 
0.4 0.31663 1.05064 0.31257 0.32783 1.00694 0.32945 
0.5 0.37748 1.05490 0.37406 0.39106 1.00799 0.38982 
0.6 0.43273 1.05835 0.43004 0.44826 1.00895 0.44722 
0.7  0.48297 1.06116 0.48103 0.50002 1.00983 0.49923 
0.8 0.52868 1.06352 0.52744 0.54686 1.01067 0.54634 
0.9 0.57030 1.06551 0.56971 0.58926 1.01147 0.58902 
1.0 0.60820 1.06723 0.60820 0.62764 1.01225 0.62767 
2.0 0.84421 1.07570 0.84649 0.85980 1.01797 0.86138 
3.0  0.93803 1.07871 0.93986 0.94623 1.02633 0.94840 
4.0 0.97535 1.08021 0.97644 0.97985 1.02445 0.98078 
5.0 0.99019 1.08123 0.99077 0.99234 1.02633 0.99285 



Numerical and Predicted Results for Energetic Reactions in Adiabatic Flow 
 
   As a first-order approximation for the effect of the heat of reaction, the following,  arbitrary linear 
perturbation of Zm0, the mixed-mean conversion for a non-energetic reaction, was tested: 
                                                           Zm = Zm0 + βZmQ                                                  (16) 
For convenience, eq.16 can be rearranged as 
                                                            Zm = Zm0/(1-βQ)                                                  (16A) 
Combining eq.15 with eq. 16A results in  
                                            Zm = [1- exp{- αk0x/um}]/(1-βQ)                                          (17)    
       
   Based on the computed values for Zm at k0x/um =1, the arithmetic average of the values of β for Q = 
0.05 and -.05 is 3.956 for laminar flow and 3.73 for turbulent flow at a+ = 1000 
Values predicted by eq. 17 with these values of β are compared with the numerically computed values 
for Q = 0.01, - 0.01, 0.05 and - 0.05 in Tables 3 – 6, respectively. The accuracy of the predictions is very 
good for Q = ± 0.01 and perhaps acceptable for intermediate conversions for Q = ± 0.05. This degree of 
agreement is somewhat surprising in that the nonlinearity of the dependence of the rate constant on 
temperature is not taken into account in eqs.16 and 17. A possible explanation for this relative success is 
the linearity of an exponential expression in the limit of a small argument. Although eq.17 would be 
expected to fail seriously for larger values of Q, most practical applications presumably involve small 
values such as those tested here. The presence of k0 in an expression for an energetic reaction is an 
artifact of the incorporation of eq.15 in eq.17. (The computed and predicted values of Zm for Q = ± 0.005 
are not reproduced here because their accuracy, as might be expected, is even better than that for Q = ± 
0.01.) 
 
   An alternative expression for the prediction of the conversion for an energetic reaction carried out 
adiabatically can be derived by scaling the following solution derived by Churchill1 for perfect radial 
mixing and an absolute value of Zmψ much less than unity: 
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Here 2
0/ RTcECq Mr≡ψ . Again, as discussed in connection with eq.14, the subscript designating the 

mixed-mean is redundant in eq.18. The ratio of the conversion, ZmQ, for an energetic reaction to that for 
a non-energetic one, Zm0, both with perfect radial mixing, is then  
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Applying the scaling of eq. 19 to a reaction with finite radial mixing, as represented by eq. 15, then 
results in     
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   The appearance of the rate constant k0 for isothermal conditions in eq. 20, which is proposed for 
adiabatic conditions, might be perceived as an anomaly, but it is merely a consequence of the asymptotic 
approximations by means of which eq.18 was derived. Equation 20 might be presumed to have an 
advantage over eq. 17 by virtue of the direct dependence on temperature inherent in eq.18, but this 
presumption might be countervailed by the limitation in the validity of eq.18 to absolute values of Zm ψ 
<< 1.0, a restriction that is exceeded even for Q = ± 0.01 as Zm → 1.0 for the chosen parametric 
condition of E/ R̂ T0  = 17..815. 
 



  These several presumptions are tested by the inclusion of the predictions of eq.20 in Tables 3 – 6. 
Inspection of the values in these tables reveals that eq. 20 provides more accurate predictions than eq.17 
for some values of Q and k0x/um and poorer ones for others. Unfortunately, their respective regimes of 
greatest inaccuracy are almost the same. Equation 17 has one clear advantage, namely of simplicity  

 
              Table 3. Comparison of Predictions by Equations 17 and 20 of Mixed-mean Conversion 

                                    in Adiabatic Flow with Thermicity Q = qr/cMT0 = 0.01 
                                                    (Same general conditions as in Table 1) 
.   
 

 
 
 
 
 

  
                                   
 
 
 
 
 
 
 
 
 
 
                                                                    Table 4 
                                (Same conditions as in Table 3 except for   Q = qr/cMT0 = - 0.01) 
 
 
                                   
                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k0x/um    Zm,laminar 
Computed 

Zm,laminar 
Eq (17) 

Zm,laminar 
Eq. (20) 

Zm,turbulent 
Computed 

Zm,turbulent 
Eq. (17) 

Zm,turbulent 
Eq. (20) 

 0.00    0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 0.10    0.09374 0.09314 0.09018 0.09571 0.09772 0.09485 
 0.20    0.17868 0.17794 0.17349 0.18337 0.18525 0.18203 
 0.30    0.25598 0.25516 0.25020 0.26349 0.26645 0.26190 
 0.40    0.32628 0.32548 0.32063 0.33652 0.33910 0.33487 
 0.50    0.39050 0.38950 0.38513 0.40296 0.40492 0.40135 
 0.60    0.44879 0.44780 0.44406 0.46328 0.46455 0.46180 
 0.70    0.50198 0.50088 0.49778 0.51792 0.51857 0.51662 
 0.80    0.55024 0.54922 0.54666 0.56736 0.56750 0.55625 
 0.90    0.59406 0.59323 0.59107 0.61201 0.61184 0.61109 
 1.00    0.63381 0.63309 0.63133 0.65227 0.65200 0.65155 
 2.00    0.87224 0.88144 0.87149 0.88650 0.89475 0.88682 
 3.00    0.95638 0.97866 0.95528 0.96369 0.98513 0.96395 

k0x/um Zm laminar 
Computed 

Zm,laminar 
Eq. (17) 

Zm,laminar 
Eq. (20) 

Zm,turbulent 
Computed 

Zm, turbulent 
Eq. (17) 

 Zm,turbulent 
Eq. (20) 

0.00  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.10  0.09162 0.08623 0.08871 0.09410 0.09069 0.09331 
0.20  0.17195 0.16474 0.16833 0.17781 0.17285 0.17662 
0.30  0.24346 0.23624 0.24001 0.25260 0.24729 0.25124 
0.40  0.30763 0.30133 0.30471 0.31966 0.31472 0.31824 
0.50  0.36555 0.36060 0.36324 0.37994 0.37580 0.37855 
0.60  0.41791 0.41458 0.41633 0.43429 0.43114 0.43296 
0.70  0.46551 0.46373 0.46456 0.48337 0.48127 0.48214 
0.80  0.50884 0.50848 0.50846 0.52780 0.52669 0.52667 
0.90  0.54836 0.54922 0.54847 0.56807 0.56784 0.56705 
1.00  0.58445 0.58633 0.58499 0.60463 0.60510 0.60375 
2.00  0.81559 0.81605 0.81794 0.83239 0.83040 0.83223 
3.00  0.91654 0.90606 0.91897 0.92702 0.91429 0.92732 



                                                                           Table 5                                  
                                (Same conditions as in Table 3 except for   Q = qr/cMT0 = 0.05) 
 
                                                                              
                                                                                       
                                                                            
      
                                                                      
                                  
 
 
 
 
 
 
 
 
 
 
    
 
 
                                                                               Table 6   
                                     (Same conditions as in Table 3 except for   Q = qr/cMT0 = -0.05) 
 
 
                                           
                                                                         
 
   
 
 
  
 
    
 
 
 
 
 
 
 
 
 
   A third alternative is the following inverse relationship derived by Churchill et al.3 for energetic 
reactions with compete radial mixing, again for absolute values of ψZm << 1.0: 

                                                              ( ) mimim ZZZ
x
x γψψψ −≅−≅−= 111
0

                                                  (21) 

Here, x0 is the length of a reactor required for the same conversion at the initial temperature, and the 
subscript im designates the use of an integrated-mean of an integral form of the differential balance of 

k0x/um Zm,laminar 
Computed 

Zm,laminar 
Eq. (17) 

Zm,laminar 
Eq. (20) 

Zm,turbulent 
Computed 

Zm,turbulent 
 Eq. (17) 

Zm,turbulent 
Eq. (20) 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.10 0.09857 0.11150 0.14273 0.09915 0.11564 0.15012 
0.20 0.19507 0.21302 0.26166 0.19596 0.22041 0.27454 
0.30 0.28782 0.30547 0.36078 0.28917 0.31532 0.37766 
0.40 0.37533 0.38964 0.44344 0.37761 0.40129 0.46313 
0.50 0.45648 0.46629 0.51240 0.46021 0.47919 0.53399 
0.60 0.53051 0.56308 0.56997 0.53618 0.54975 0.59274 
0.70 0.59708 0.59963 0.61806 0.60495 0.61368 0.64145 
0.80 0.65619 0.65750 0.65826 0.66628 0.67159 0.68184 
0.90 0.70812 0.71019 0.69191 0.72020 0.72405 0.71534 
1.00 0.75330 0.75816 0.72008 0.77698 0.77158 0.74315 
2.00 0.96058 1.05521 0.84328 0.97002 1.05899 0.85811 
3.00 0.99439 1.17160 0.86886 0.99661 1.16581 0.87675 

 k∞x/um   Zm,laminar 
Computed 

Zm,laminar 
Eq.(17) 

Zm,laminar 
Eq. (20) 

Zm turbulent 
Computed 

Zm turbulent 
Eq. (17) 

Zm turbulent 
Eq. (20) 

    0.00     0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
    0.10     0.08783 0.07467 0.08587 0.09108 0.07929 0.09032 
    0.20     0.16051 0.14266 0.15856 0.16784 0.15112 0.16637 
    0.30     0.22287 0.20458 0.22095 0.23379 0.21619 0.23129 
    0.40     0.27741 0.26096 0.27515 0.29124 0.27514 0.28737 
    0.50     0.32576 0.31228 0.32271 0.34187 0.32855 0.33631 
    0.60     0.36904 0.35903 0.36482 0.38690 0.37693 0.37939 
    0.70      0.40808 0.40159 0.40239 0.42726 0.42076 0.41761 
    0.80     0.44353 0.44034 0.43613 0.46366 0.46046 0.45175 
    0.90     0.47590 0.47563 0.46663 0.49670 0.49643 0.48244 
    1.00     0.50557 0.50776 0.49433 0.52681 0.52902 0.51017 
    2.00     0.70673 0.70671 0.67639 0.72636 0.72598 0.68829 
    3.00      0.81475 0.78465 0.77172 0.83004 0.79932 0.77872 
    4.00     0.87921 0.81519 0.82933 0.89062 0.82662 0.83302 
    5.00     0.91979 0.82715 0.86714 0.92817 0.83678 0.86896 



the mixed-mean conversion with respect to the axial distance through the reactor. The term γZm in the 
rightmost term of eq. 21 constitutes an approximation for Zim. For example, an arithmetic mean of the 
conversion at the inlet and at length x would yield a value of 0.5 for the coefficient γ. Test calculations 
by Churchill et al.3 for Zm = 0.7 for perfect radial mixing revealed that for these idealized condition the 
coefficient γ was a function only of ψ, and furthermore the same function for all conditions, including 
second-order as well as first-order reactions and for both laminar and turbulent flow with no radial 
mixing This suggests determining a value of γ from the computed values of x/x0 for a series of values of 
Zm and Q and thereby of ψ for laminar and turbulent flow with finite radial transport.  Such a set of 
values of x/x0 is listed in Table 7  and the corresponding values of γ in Table 8. 
 
                                                                     Table 7  
                           Computed Values of x/x0 for Adiabatic Reaction with E/RT0 = 17.815 
                                                    and Fixed Values of Zm and Q 
                                               (Same general conditions as in Table 1) 
Laminar 
 
 

Turbulent 
 
  
 
 
 
 
 
 
 
 
 
 
               Code:   A       B          C             D                 E             F               G 
                   Q      0     0.01      -0.01         0.05          -0.05       0.005     -   0.005 
                   Ψ      0  0.17815  0.17815  0.89075  -.089075  0.089075  -0.089075 
 
   Although invariance of γ is not observed with respect to ψ, Zm, or the rate of flow, the variations are 
limited and have some regularity. For example, the values of γ increase monotonically as cooling 
decreases and heating increases for each particular mixed-mean conversion. In both laminar and 
turbulent flow, the value of γ increases monotonically with the mixed-mean conversion for Q = -0.005, -
0.01, and -0.05 in the turbulent regime, increases monotonically for Q = - 0.05, and decreases 
monotonically. This less constrained behavior than that for no mixing and for perfect mixing may be 

Zm/Q     A 

  0           
    B 
0.005 

     C 
-0.005 

     D 
   0.01 

     E 
  -0.01 

     F 
   0.05 

    G 
 -0.05 

0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 

0.37439 
0.53971 
0.73612 
0.97775 
1.28937 
1.72886 
2.48111 

0.36777 
0.52761 
0.71567 
0.94550 
1.23983 
1.65110 
2.35094 

0.38102 
0.55209 
0.75715 
1.01116 
1.34179 
1.81151 
2.62051  

0.36143 
0.51580 
0.69609 
0.91439 
1.19231 
1.57823 
2.22883 

0.38764 
0.56476 
0.77903 
1.04630 
1.39679 
1.89907 
2.77113 

0.31363 
0.42950 
0.55756 
0.70473 
0.88358 
1.12175 
1.50652 

0.44525 
0.67853 
0.98093 
1.38499 
1.95379 
2.82787 
4.45766 
 

Zm/Q     A 
     0 

    B 
0.005 

    C 
-0.005 

     D 
   0.01 

     E 
  -0.01 

     F 
 -0.01 

     G 
 -0.05 

0.30 0.35914 0.35395 0.36432 0.34877 0.36950 0.31190 0.41645 
0.40 0.51494 0.50515 0.52531 0.49536 0.53568 0.53568 0.63129 
0.50 0.70013 0.68285 0.71798 0.66614 0.73613 0.73613 0.91029 
0.60 0.92707 0.89914 0.95645 0.87206 0.98697 0.98697 1.28649 
0.70 1.22026 1.17590 1.26720 1.13414 1.31673 1.31673 1.81958 
0.80 1.63526 1.56470 1.71043 1.49817 1.79021 1.79021 2.64758 
0.90 2.34749 2.22566 12.4788 2.11161 2.61907 2.61907 4.21113 



attributed to the relatively large values of ψZm.. Only the values for Q = ±0. 005 conform to mZψ  << 
1.0 for all values of Zm. The small deviations between γ for Q = 0.005 and -0.005 can be attributed to the 
approximation of e- mZψ   by 1 – ψZm and/or by 1/(1 + ψZm) in the derivation of eq. 21. The greater 
differences with respect to flow in Table 8 relative to Tables 6 – 8 of Churchill et al.3 can probably be 
attributed to turbulent transport of energy and species A. On the basis of the prior calculations for 
negligible or perfect mixing, the values of γ in Table 8 are presumed to be relatively invariant with 
respect to E/ R̂ T0 , Q, the degree of radial mixing, and possibly to the order of the reaction for the same 
value of ψ,. It follows that eq. 21 can be used to predict values of x/x0, not only for the values of ψ and 
Zm of Table 8, but also by interpolation for other values and conditions as well. In that sense, eq 21 is 
superior to eqs.17 and 20 as a predictive expression for adiabatic flow. However, it should be noted to 
be less convenient in that it is explicit in Zm whereas Eqs. 17 and 20 are explicit in k0x/um. Also, the tests 
of eq. 21 in Tables 10 and 11 are limited arbitrarily to k0x/um = 1.0.  
 
                                                                     Table 8 
                                   Computed Values of Coefficient γ for Equation 21 
                                                            E/RT0 = 17.815   
                                         (Same general conditions as for Table 1) 
 

 
Numerical and Predicted Results for Uniform Heating 
 
   Heating or cooling of the wall of a reactor influences the local rate of reaction and thereby the 
conversion by virtue of the resulting perturbation of the radial and longitudinal temperature distributions 
and in turn the local values of the rate constant.  Such effects obviously depend on the thermicity, Q, of 
the reaction.  In the absence of an overall theoretical solutions for this behavior, an additive perturbation 
of the conversion for an adiabatic reaction was postulated. Based on eq. 17 for an adiabatic reaction, this 
expression becomes: 
                                     Zm = [1- exp{- αk0x/um}]/(1-βQ) +  σJ                                        (22)  
For moderate values of J, as defined by the resulting perturbation of the conversion,  values of 0.710 and 
0.00585 were determined for the coefficient σ for laminar flow at Re = 400 and turbulent flow at a+ = 

   Q   0.005   0.01   0.05   -0.005     -0.01        -0.05 
   Flow Zm/Ψ 0.089075 0.17815 0.89075 - 0.089075 - 0.17815 - 0.89075 
        
  Laminar  0.3    0.6621  0.6477 0.6074   0.6621    0.6621    0.7081 
  0.4   0.6290  0.6216 0.5731   0.6440    0.6615    0.7218 
  0.5   0.6237      0.6105 0.5446   0.6413    0.6544    0.7467 
  0.6   0.6176  0.6064 0.5225   0.6390    0.6557    0.7777 
  0.7   0.6165  0.6036 0.5047   0.6520    0.6679    0.8264 
  0.8   0.6312  0.6113 0.4928   0.6709    0.6908    0.8921 
  0.9   0.6545  0.6342 0.4900   0.7007    0.7290    0.9937 
        
 Turbulent  0.3   0.5402  0.5402 0.4921   0.5402    0.5402    0.5402 
( a+=1000)  0.4   0.5337      0.5337 0.4824   0.5651     0.5651    0.6342 
  0.5   0.5539  0.5448 0.4775   0.5730    0.5774     0.6752 
  0.6   0.5638  0.5551 0.4737   0.5929    0.6045    0.7254 
  0.7   0.5829  0.5659 0.4724   0.6170    0.6340    0.7877 
  0.8   0.6055  0.5882 0.4758       0.6451    0.6646    0.8687 
  0.9   0.6473  0.6267  0.4877   0.6978    0.7216    0.9903 



1000 (Re = 37640), respectively.  The predictions of eq. 22 are compared with numerically computed 
values for k0x/um = 1.0 in Tables 9 and 10. The agreement is almost perfect for Q = 0 for all of the values 
of J and for J =0 for all of the values of Q. The agreement is also very good for non-zero values of Q 
and J.  The trends in the conversion with Q and J conform to expectations. Similar agreement to that 
shown in Tables 9 and 10 was found for other values of k0x/u in the range of 0.4 to 3.0.   On the basis of 
qualitative reasoning it is suggested that eq. 22 be generalized for other rates of flow by replacing σ in 
eq. 22 by η/Re, thereby obtaining   
                                      Zm = [1- exp{- αk0x/um}]/(1-βQ) +  ηJ/Re                                 (23)                                       
The corresponding value of η for laminar flow at Re = 400 is 0.710(400) = 284, and that for turbulent 
flow at a+ = 1000 is 0.00585(37640) = 220. The near equality of η for rates of flow differing by an order 
of magnitude is supportive of this concept of generalization 
  
                                                          Table 9 
      Computed Values and Predictions by Equation  22 of the Mixed-mean Conversion for      
          Representative Values of the Uniform Heat Flux Density, J = jwa/λT0, and the                     
                 Thermicity, Q = qr/cMT0, at k0x/um =1.0 in Laminar Flow 
                              (Same general conditions as for Table 1) 
 

 
 
 
 
 
 
 
 
 
                                                  
 
 

 
                                                             Table 10 
                     (Same general conditions as for Table 9 except flow is turbulent) 
 

     J/Q -0.05 -0.01       0    0.01    0.05 
Calculated  -10.0   0.57610 0.59860 0.70718 
Predicted   -10.0   0.56918 0.59349 0.71307 
Calculated   - 5.0   0.59936 0.62296 0.73561 
Predicted    -5.0   0.59843 0.62275 0.74232 
Calculated     0.0 0.52685 0.60463 0.62764 0.65227 0.76698 
Predicted     0.0 0.52902 0.60510 0.62768 0.65200 0.77157 
Calculated     5.0 0.55339 0.63560 0.65916   
Predicted     5.0 0.55827 0.63436 0.65693   
Calculated   10.0 0.58333 0.66459 0.68747   
Predicted   10.0 0.58752 0.66361 0.68618   

 
Numerical and Predicted Results for Uniform Wall-Temperature 
 
   A uniform wall-temperature perturbs the radial and longitudinal temperature distributions within the 
fluid and thereby the conversion just as does uniform heating but the reference condition is that for 

     J/Q   -0.05 -0.01       0    0.01    0.05 
Calculated   -0.10   0.53993 0.56188 0.67100 
Predicted   -0.10   0.53720 0.56225 0.68716 
Calculated   -0.05   0.57304 0.59693 0.71317 
Predicted    -0.05   0.57270 0.59775 0.72266 
Calculated     0.0 0.50557 0.58445 0.60820 0.63381 0.75330 
Predicted     0.0 0.50776 0.58505 0.60820 0.63325 0.75816 
Calculated     0.05 0.53453 0.61921 0.64434   
Predicted     0.05 0.54325 0.62055 0.64370   
Calculated     0.10 0.56474 0.65419 0.68007   
Predicted     0.10 0.57876 0.65605 0.67920   



isothermal flow with Tw = T0 rather than that for adiabatic flow. The following expression was 
postulated for this behavior:  
                                                        Zm = 

0TZ + ξQZm                                                   (24) 
which may be rearranged for convenience as  
                                                        Zm = 

0TZ /(1- ξQ)                                                  (24A) 
From the numerically computed conversions for k0x/um =1, mean values of 2.189 and 3.538 for ξ were 
determined for laminar and turbulent flow, respectively. A high degree of success for the predictions of 
eq. 24A is demonstrated in Tables 11 and 12 in the column for Tw/T0 =1.  
                
                                                        Table 11  
Computed Values and Predictions by Equation 25 of the Mixed-mean Conversion for 
     Representative Values of the Temperature Ratio Tw / T0 and the Thermicity,                    
                             Q = qr/cMT0, at k0x/um =1.0 in Laminar Flow 
 
                              (Same general conditions as for Table 1) 
 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 Table 12 
                 (Same conditions as for Table 11 except for turbulent flow) 
 

                                                   
 
 
 
 
 
 
 
 
 
 
 
 

                
               In the absence of any theoretical solutions, the perturbation in laminar flow at Re = 400 was found by 

trial and error to be proportional to 
2/1

0

0

T
TTw −

, leading to  

 Q/ (Tw/T0)         0.8     0.9     1.0      1.1     1.2 
Calculated       0.05 0.38004 0.49266 0.68471   
Predicted       0.05 0.40344 0.48530 0.68295   
Calculated       0.01 0.33830 0.43913 0.62189   
Predicted        0.01 0.33744 0.41930 0.62181   
Calculated       0.00 0.32955 0.42789 0.60820   
Predicted       0.00 0.32869 0.41506 0.60820 0.80584 0.88771 
Calculated       -0.01   0.59522 0.77970 0.86883 
Predicted      -0.01   0.59517 0.79281 0.87468 
Calculated      -0.05   0.54942 0.74144 0.84524 
Predicted      -0.05   0.54831 0.74595 0.82782 

 Q/ (Tw/T0)         0.8     0.9     1.0      1.1     1.2 
Calculated       0.05 0.69370 0.72495 0.75887   
Predicted       0.05 0.69493 0.72873 0.76253   
Calculated       0.01 0.58969 0.61752 0.65706   
Predicted        0.01 0.58306 0.61686 0.65066   
Calculated       0.00 0.56813 0.59501 0.62764 0.66343 0.69466 
Predicted       0.00 0.56008 0.59388 0.62768 0.66148 0.70528 
Calculated       -0.01   0.60601 0.64195 0.67421 
Predicted      -0.01   0.60619 0.63999 0.67379 
Calculated      -0.05   0.53249 0.56788 0.60270 
Predicted      -0.05   0.53330 0.56710 0.60090 



                                                           Zm = ( )Q
ZmT

ξ−1
0 +

( )
( ) 2/1

00

0

TTT
TT

w

w

−
−χ

                                       (25) 

 
   The rightmost term of eq. (25) was devised to yield the correct sign. A mean value of 0.625 for the 
arbitrary coefficient, χ, was determined from the numerically computed conversions for k0x/um =1. The 
resulting predictions in Table 11 are in fair agreement with the computed values. On the other hand for 
turbulent flow at a+ = 1000 (Re = 37640), the perturbation in the conversion for Tw ≠T0 was found to be 
proportional to (Tw –T0)/T0 rather than its square-root, leading to  
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A mean value of 0.338 was determined for ε from the numerically computed conversions, again for 
k0x/um =1. The predictions of eq. 26 with the indicated coefficient are observed in Table 12 to be in very 
good agreement with the numerically computed values, the one exception is the value for Tw/T0 = 0.8 
and Q = 0.05, which is 6.2% too high. 
 
   Similar agreement to that shown in Tables 11 and 12 was found for other values of k0x/u in the range 
of 0.4 to 3.0. However, the accuracy of the predictions of eqs. 25 and 26 was not tested for other rates of 
flow, greater perturbations in (Tw –T0)/T0, and values k0x/um other than 1.0, and is therefore open to 
greater uncertainty than the predictions of the other expressions. 
 
 Overall Evaluation of Predictions 
 
 Since the predictions of the several different expressions derived herein were each compared in tabular 
form with the most relevant computed values, only an overall comparison is presented graphically in 
Figure 2 in which the predicted values of the mixed-mean conversion are plotted versus the computed  
values. Because the predictions and computations Tables 2-6 and 9-11 are for 108 conditions, the plotted 
values are coded only in terms of the predictive equation, the regime of flow, and the regime of heating 
or cooling - not separately for each value of Q, J, and Tw/T0.  The agreement is reasonably good for all 
but a few conditions. The outliers are almost all for adiabatic conditions with Q = ± 0.05 and for 
fractional mixed-mean conversions approaching unity. These particular predictions could be brought in 
better agreement by adjusting the value of the coefficient β in eq. 16, but at the expense of poorer 
agreement for the lesser values of Q for which eq. 16 might be expected to apply and for the range of 
conversions of greatest practical interest. 
  At the outset of this work difficulty was anticipated in correlating and generalizing the numerical 
solutions for two reasons: first, the multiplicity of parameters even for a single simple reaction, and 
second, the lack of analytical solutions because of the inherent non-linearities of reacting systems, 
particularly energetic ones. Figure 2 appears to belie the anticipated difficulty. This success is primarily 
a consequence of the identification, derivation, and utilization of asymptotic expressions. For example, 
eq. 14, the solution for a tubular reactor with perfect radial mixing provided the basis for eq. 15 for finite 
molecular and eddy reaction diffusion, in both instances for a non-energetic reaction. In turn, an 
arbitrary linear perturbation converted eq.15 to eq. 17, which represents an adiabatic reaction. Scaling 
eq.15 with an asymptotic expression for perfect radial mixing and |ψZm| << 1.0, namely eq.19, results in 
eq. 20 as an alternative to eq.17. An inverse relationship, namely eq. 21, is based on another asymptote 
for |ψZm | << 1.0. Equation 22 for uniform heating was constructed by adding a linear perturbation to 
Eq. 17. Equations 25 and 26 for uniform wall-temperature were devised by first deriving eq. 24 for 
Tw=T0 and then adding a perturbation to represent the contribution of  Tw ≠ T0 . In some respects, this 
pieced-together asymptotic structure is equivalent to the analogy between momentum, energy, and mass 
transfer as an aid to correlation and prediction, but overall it is inferior because of the limited range of 



applicability of each of the asymptotes.  Indeed, it should be noted that out of respect for these 
limitations, the computed values were restricted to only moderate thermal perturbations. 
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  Figure 2. Comparison of Predicted and Computed Mixed-Mean Conversion 
 
Potential for Numerical Solutions  
 
   Although, as discussed in the previous paragraph, the predictive and correlative equations developed 
in this investigation are limited to small thermal perturbations, no such restriction was encountered in 
carrying out the numerical solutions. Indeed, numerical solution of the general partial differential model, 
namely eqs. 1 – 4, is within the capability of undergraduate students as well as of most practicing 
engineers. The execution of such numerical calculations is a valid and feasible alternative to the use of 
the correlative expressions solutions devised herein 
 
   Accounting for variations in physical properties results in a loss of generality and effectively requires a 
repeated solution for each set of reactants and thermal conditions. In particular, variations in the density 
and viscosity with temperature, as well as those due to a non-equimolar gas-phase reaction, affect both 
the radial and longitudinal velocity field and thereby require solution of the two-dimensional equations 
of conservation for momentum or the postulate of some gross approximation thereof.  
 



     Multiple reactions and more complex reactions may pose even greater difficulty. The most serious 
effect is not the obvious increase in magnitude of the computations but the possible introduction of 
“stiffness” and other forms of instability. 
 
   In retrospect and on the basis of the computed values of the conversion as a function of k0x/um, a value 
of k0a/um smaller, perhaps by an order of magnitude should have been chosen in order to yield 
reasonable values of x/a for moderate conversions. However, since the primary purpose of the 
computations was to illustrate affects and to provide a set of values to guide and test the construction of 
correlative and predictive expressions, a complete repetition of the calculations for a smaller value did 
not appear to be justified.  
 
Summary and Conclusions 
 
   Numerical integrations were carried out for a first-order irreversible equimolar reaction in fully 
developed laminar flow in a tubular reactor taking into account the molecular diffusion of species and 
energy in the radial direction, the heat of reaction, and two modes of heat exchange with the 
surroundings. The computations encompassed a set of representative thermal values. Invariant physical 
properties including density were postulated in the interests of generality. The same calculations were 
repeated for fully developed turbulent flow.  
 
   Predictive equations, based on the perturbation of asymptotic solutions for perfect radial mixing, were 
demonstrated to reproduce the numerically computed values with sufficient accuracy for all practical 
purposes.  
 
   Numerical integrations such as those carried out in this investigation were concluded to be within the 
capability of undergraduate students and practicing engineers both conceptually and computationally, 
and therefore to constitute a serious alternative to the predictive expressions derived herein as well to the 
super-idealized analytical solutions in the current literature. Knowing how to solve a problem in general 
is usually preferable to knowing one or more analytical solutions or algebraic predictive equations for 
special cases.  
 
   The numerical integrations were limited to particular values of Re, Sc, Pr, E/RT0 and k0a/um and a 
limited range of values of qr/cMT0, jwa/λT0, and Tw/T0 because they were intended to be illustrative and to 
provide a data base for the construction of correlative equations of first-order. However, the numerical 
methodology appears to be feasible without modification for other values of the parameters within 
reason. On the other hand, to account for the variation of physical properties with temperature, and for 
multiple reactions and/or other rate mechanisms calls for more sophisticated numerical algorithms and 
greatly increased computation.   
 
Notation 
A = reactant 
a  = radius 
a+ = a(τwρ)1/2/ μ  
CA = concentration of species A 
c = specific heat capacity  
cM

 = heat capacity per mole 
Df  = diffusivity 
E = energy of activation 
jw = heat flux density at wall 
k = reaction rate constant 



k∞ = frequency factor 
Nu = Nusselt number = 2jwa/λ(Tw-Tm) 
Pr = Prandtl number = cμ/λ 
Prt = turbulent Prandtl number 
Q =  thermicity = qr/cMT0 = CA0qr/ρcT0 
qr = heat of reaction per mole  
R = r/a 
R̂ = universal gas constant 
Sc = Schmidt number = μ/ρDf 
Sct = turbulent Schmidt number 
T = absolute temperature 
u = time-averaged velocity  
u+ = u(ρ/τw)1/2 

+
mu = um(ρ/τw)1/2 

u’ = fluctuation in u 
''vu  = time-average of product of fluctuations 

++)''( vu = -ρ ( )''vu /τ 
v’ = fluctuation in velocity component normal to wall 
X = xk0/um 
x = distance from inlet 
xmixed = distance for perfect radial mixing 
x0 = distance from inlet for isothermal reaction 
y  = distance from wall = a-r 
y+ = y(τwρ)1/2/ μ  
Z = fractional conversion = (CA0 -CA)/CA0 
Greek symbols 
α = arbitrary coefficient in eq.15 representing effect of diffusion 
β = arbitrary coefficient in eq.16 representing effect of thermicity 
γ  = arbitrary coefficient in eq. 21 approximating integrated mean value 
ε  = arbitrary coefficient in eq. 26 representing effect of wall temperature in turbulent    
       flow 
η  = arbitrary coefficient in eq. 23 representing effect of heat flux density at the wall  
λ = thermal conductivity 
μ = dynamic viscosity 
ξ  = arbitrary coefficient in eq. 24 representing effect of thermicity with Tw = T0   
ρ = specific density 
σ = arbitrary coefficient in eq. 22 representing effects of heat flux density at the wall and       
      the rate of flow 
χ = arbitrary coefficient in eq. 25 representing effect of wall temperature in laminar flow 
τ = shear stress 
Φ = (T – T0)/T0 
ψ = QE/cM R̂ 2

0T  
Subscripts 
im = integrated mean 
m = mixed-mean 
Q = for energetic reaction  
w = at wall 
0 = at inlet or for T0 or Q = 0 
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