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ABSTRACT 
 
Microfluidic systems (lab-on-a-chip devices) are employed in micro-technology having 

applications in protein and DNA analysis, sensors, and micro electronics mechanical systems. 
These systems operate in a pressure driven flow regime with no moving parts to drag the 
fluids. Our research aims at developing rigorous assessment and quantification of mixing in 
microchannels. The work presented is based on numerical simulations of flow in different 
geometries coupled with mixing assessment using entropic measures. The results show 
enhanced mixing efficiency for the geometry similar to the staggered herringbone mixer by 
comparison with a mixer with straight diagonal ridges and lack of mixing in a non-patterned 
channel. 

 

1. INTRODUCTION 
 
Micromixers are microfluidic systems where two or more fluids are mixed; these 

systems are used, for example, for controlling the dispersion of minor components in Poiseuille 
flows and for homogenization of solutions in chemical reactions.1 Microfluidic devices generally 
operate in a laminar flow regime and consequently mixing is a difficult task.2 Due to the 
typically low Reynolds number and the high Peclet number encountered in such systems, 
mixing is primarily achieved by manipulating the channel geometry3.  

 
Mixing evaluation in microchannels has primarily relied on observing color or intensity 

variations of a dye as it is transported through the mixer,4,5 or studying the interface 
configuration between two fluids, one of which fluorescent, by employing confocal fluorescence 
microscopy.6 Numerically, the performance of different mixers was based on studying virtual 
particles trajectories computed using a Lagrangian method and interpreting the results in terms 
of computed Poincare maps7,8 or Lyapunov exponents. In this case, the underlying assumption 
in the interpretation of the results is that mixing can be achieved efficiently only in chaotic 
flows.4,7,8 However, chaos is not a pre-requisite for mixing and therefore a lack of chaos does 
not implicitly preclude system homogenization.  

 
In the present work we are presenting a couple of alternative ways to characterize and 

quantify the degree of mixing in microchannels. We propose to use numerical simulations to 
study the flow patterns in channels with various geometries and to employ the conditional 
Shannon entropy to rigorously quantify the dynamics of mixing for two miscible fluids 
distinguished by color. 

 
The proposed entropic analysis can be also carried out for data obtained in 

experiments, thus making it universally applicable for mixing evaluation. We also characterize 

 



the geometric structures developed in flow with multifractal dimensions thus providing a 
complementary measure of quality of mixing. 
 

2. THEORETICAL BACKGROUND  
 
2.1. Multifractal Dimensions and Renyi Entropies 

 
The Shannon9 entropy S is the rigorous measure of mixing or lack of information and it 

has been used in many different scientific areas.10,11,12,13 It is uniquely determined from 
reasonable properties (Khinchin axioms14), that a measure of the lack of information or mixing 
must satisfy: (I) it depends on the probability distribution p only;  (II) the lowest entropy (S = 0) 
corresponds to one of the p's being 1 and the rest being zero (i.e., total information, perfect 
order, complete segregation); (III) the largest value for the entropy is achieved when all p's are 
equal to each other (i.e., the absence of any information, complete disorder, perfect mixing); 
and (IV) S is additive over partitions of the outcomes.  
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If the last Khinchin axiom is relaxed to consider only statistically independent 

partitions, Rényi15 found that the information entropy is replaced by a one-variable function: 
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In Equations (1) and (2) M is the number of equisized sub-domains (bins) employed to 

cover the space analyzed. Equation (2) gives the Shannon entropy (Equation 1) in the limit of 
� →1. If � > 0 the function defined in Equation (2) is maximized when all p’s are equal to each 
other. It follows that: 0 < S(β) < ln(M).  Thus S(β)/ln(M) constitutes an index of  homogeneity: it 
is 1 for total disorder or homogeneity and is small for high order or segregation.  

 
Multifractals are used to model the geometric structure of complex systems such as 

the backbone of the percolation cluster or the structure generated in diffusion limited 
aggregation.  While fractals are characterized by a single fractal dimension, multifractals are 
characterized by a one-variable function or spectrum of dimensions d(β).  By varying the 
parameter β we get the Hausdorff dimension when β = 0, the information (Shannon) dimension 
when β = 1 and the correlation dimension when β = 2.  These dimensions are obtained by 
using the Rényi entropy defined in Eq.(2). A graph of S(β) versus ln(M) shows a straight line 
dependence for  1 << M<< N (number of particles).  The slope of the line is the ratio: d(β)/D, 
where D is dimension of embedding space.   
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As a result, the fractal dimension d(β) can be obtained by plotting the Rényi entropy 

versus the logarithm of the number of bins M and fitting the plot with a linear function.   

 



2.2. Shannon Entropy for Multi-component Systems 
 
The Shannon entropy for a multi-component system with C components distributed in 

a cross-sectional space divided in M smaller equisized sub-domains (bins) is: 
 

, ,
1 1

ln
M C

j c j
j c

S p
= =

= −∑∑ cp  (4)

 
where pi,c is the joint probability that a particle is of component c and is located in bin j. The 
total entropy is additive in the sense that it is equal to the sum of the conditional entropy 
Slocation(species) and the entropy of spatial distribution S(location): 
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Slocation(species) is an average over the M spatial bins, of the entropy of mixing the C 

species conditional on bin location. In Equations (5) and (6) above pj is the probability that a 
particle is in bin j irrespective of species and pc/j is the probability that a particle is of the type c 
conditional on being in bin j. S(location) is the entropy associated with the spatial distribution of 
particles irrespective of their species: 
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In this work we analyze the mixing of two incompressible fluids (C = 2). Since the 

density at any location does not change in time, the entropy S(location) is also constant at all 
times during the process. Thus we concentrate on Slocation(species) which measures the local 
quality of mixing of the two fluids averaged over space. Since 0 ≤ Slocation(species) ≤ ln(C), we 
normalize the species entropy conditional on locations Slocation(species) on ln(C) to get an index 
of mixing varying between 0 for perfect segregation and 1 for perfect mixing. The number of 
bins, M, controls the scale of observation. 

 

3. NUMERICAL PROCEDURE 
 
In our studies we employed FIDAP, a commercial CFD-FEM package to solve the 3D 

steady-state, isothermal flow of a Newtonian fluid in the various geometries. Massless, non-
interacting virtual tracers distinguished by color were randomly placed at the entrance of the 
flow channel and their position was followed along the channel length. We employed a fourth-
order Runge-Kutta method in the particle tracking algorithm. 

 

 



4. SIMULATIONS 
 
We consider three different microsystems: a rectangular channel with no patterns on 

the walls, a rectangular channel with simple straight ridges on the bottom wall and a 
rectangular channel with asymmetric V ridges similar to the staggered herringbone mixer 
(SHM).3  

 
The Straight Diagonal Ridge (SDR) geometry has all equal ridges placed at an angle 

of 35° with respect to the x axis. The Asymmetric V Ridge (AVR) mixer has ridges with two 
arms asymmetric in length both forming an angle of 35° with the x axis. Every six ridges the 
geometry is inverted so that each six ridges form the mirror image of the previous six ones. 
Schematics of these two geometries are shown in Figure 1. To validate our numerical work we 
also analyze the mixing process in the staggered herringbone mixer (SHM) and compare it to 
the published experimental results.3

 
The boundary conditions for the CFD simulations of the pressure driven flow are an 

average velocity in the down channel direction of 1 m/s and no slip at the solid surfaces. The 
fluid is Newtonian with density of 103 kg/m3 and viscosity of 10-3 Pa s. We used 8000 tracers of 
two colors (4000 per species) randomly placed at the inlet of the mixers to completely fill the 
cross-section and follow their trajectories to observe the dynamics of the mixing process. 

 

(a) 

(b) 

 
Figure 1. (a) Geometry of the channel with straight diagonal ridges (SDR). The height h is 8·10-5 m, the width w is 
2·10-4 m, the ridge thickness t and the ridge height a are both 2·10-5 m; the minimum distance between two 
consecutive ridges d is 2·10-5 m. The angle that each ridge forms with the x axis is 35°.  (b) Geometry of the 
channel with asymmetric V ridges (AVR). The height h is 8·10-5 m, the width w is 2·10-4 m, the ridge thickness t 
and the ridge height a are both 2·10-5 m, the minimum distance between two consecutive ridges d is 2·10-5 m. The 
angle that each portion of the ridge forms with the x axis is 35°. 

 
The initial tracer distribution and progression of mixing of the two fluids are shown in 

Figures 2left and 2center for the SDR micromixer and the AVR micromixer, respectively. There 

 



is no change between the inlet and exit configurations in the straight channel geometry and we 
do not present this result graphically. Visual inspection of those images provides a qualitative 
assessment of mixing in different geometries. And although formation of striations can be 
clearly observed for both the SDR and the AVR geometries, mixing seems to progress faster in 
the AVR system by comparison with the SDR geometry. Figure 2right shows the results 
obtained in the experiments in reference [3], providing a side by side comparison with our 
results from the CFD calculation. 
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Figure 2. Evolution of mixing in the SDR (left) and AVR (center) micromixer simulations. (a) Initial 
condition (xy cross section at z=0); all consecutive images represent cross-sections of the system at: (b) 
z= 1·10-2 m; (c) z= 2·10-2 m; (d) z= 3·10-2 m; (e) z= 4·10-2 m; (f) z= 5·10-2 m. Pictures from reference 3 
represent the evolution of mixing in the SHM. 

 

5. RESULTS  
 
5.1. Entropic Analysis 

 
There is no mixing between the two species in the straight channel. For the SDR and 

AVR geometries, the level of mixing at different cross-sections along the channel length are 

 



plotted in Figure 3 in terms of the normalized Slocation(species). One can clearly observe that 
the normalized Slocation(species) attains higher values in the AVR channel by comparison with 
the SDR geometry. Concerning the dynamics of the mixing process, one can distinguish a 
higher initial slope of the normalized Slocation(species) versus channel length in the case of the 
AVR configuration by comparison with the SDR mixer.  

To facilitate comparison of the three systems, in Figure 4 we plot the normalized 
Slocation(species) versus the distance from the inlet for the three different geometries at 1500 
bins, the highest level of resolution/smallest scale of observation used in the analysis. The 
AVR mixer clearly shows the highest mixing efficiency both in terms of mixing quality and 
mixing rate. 

  

 

Figure 3. Normalized Slocation(species) versus distance from the inlet for different number of bins. The maximum 
values reached by the AVR mixer are higher by comparison with the SDR mixer. The effect of the number of bins 
used in the analysis is clearly visible.  

 
Figure 4. Comparison of mixing efficiency in the three different geometries. 

 



 
We finally apply our entropic analysis on the experimental results obtained by Stroock 

et al.3 To compute the entropy, each of the six cross sections in Figure 2center has been 
converted to gray scale, divided into 1500 bins and Slocation(species)  was computed from 
Equations (5) and (6). The results are presented in Figure 5 along with the results obtained in 
the numerical simulations for the AVR mixer. The result of the entropic analysis is rewarding as 
it demonstrates that the methodology proposed here can be successfully applied to both 
numerical simulations and experiments. 

 

 
Figure 5. Comparison of the entropic analyses of the pictures presented in figure 2center and right. Every picture 
is divided into 1500 bins and the entropy Slocation(species) is calculated based on the probabilities p1/j and p2/j 
representing the averages over the total number of pixels in bin j for the black and white levels respectively. 

 

5.2. Fractal Analysis 
 
We analyze the structures generated in the staggered herringbone mixer and reported 

by Stroock et al.3 in terms of their fractal dimensions. The six images shown in Figure 2right 
were converted to grayscale. Each pixel j has a gray scale value xj varying between 0, black, 
and 255, white. Renyi entropies were calculated for each image by using the probability pj, 
computed using the reading from each pixel 
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 To determine the multifractal dimensions we analyzed the pictures at different scales. 

To this end we form equal sized bins, each containing several pixels. The x value associated 

 



with a bin is the mean of the x values from the pixels belonging to the bin. The probability 
associated with the bin is obtained from Equation (8) and then used to compute the Rényi 
entropy, Equation (2).   

 
The slope of the plot of the Renyi entropy S(β) versus ln(M) for M >> 1 is d(β)/D, with 

D = 2. For each picture we considered 10 scales of observation starting from 16058 (number 
of pixels). The dependence of the multifractal dimension on section and β is shown in Figure 6.  
The starting section has a dimension 2, since the rectangular section is half filled with one fluid 
and half with the other fluid. The last section also shows a dimension close to 2, corresponding 
to a homogeneous configuration. The dimensions are less than two for the intermediate 
sections, 2 through 5, in view of the less than perfect homogeneity exhibited.   

 

 
Figure 6. Multifractal dimension vs. section and beta 

 

6. CONCLUSIONS 
 
Microfluidic devices were analyzed for their mixing efficiency using an entropic 

method. Our results show an enhanced mixing efficiency for the AVR system (a similar version 
of the SHM mixer) by comparison with the SDR system. We have also analyzed directly the 
experimental data from the SHM mixer3 demonstrating the adaptability of this method to both 
simulations and experiments. 
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