
Transport Coefficients and Orientational Distributions of Rodlike Particles with
Magnetic Moment normal to the Particle Axis under Circumstances of a Simple
Shear Flow and an External Magnetic Field

AKIRA SATOH
             Professor, Akita Prefectural University, Japan
MASATAKA OZAKI*1 and TEPPEI ISHIKAWA*2

                 *1 Professor and *2Graduate Student, Yokohama City University, Japan
TAMOTSU MAJIMA
            Professor, Chiba University,  Japan

AIChE 2005 Annual Meeting, Cincinnati, October 30-November 4, 2005  

ABSTARCT

We have investigated the influences of the magnetic field strength, shear rate, and
random forces on transport coefficients such as viscosity and diffusion coefficient, and also
on the orientational distributions of rodlike particles of a dilute colloidal dispersion.  This
dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment
normal to the particle axis.  In the present analysis, these spheroidal particles are assumed
to conduct the rotational Brownian motion in a simple shear flow as well as an external
magnetic field.  The basic equation of the orientational distribution function has been
derived from the balance of the torques and solved numerically.  The results obtained here
are summarized as follows.  For a very strong magnetic field, the rodlike particle is
significantly restricted in the field direction, so that the particle points to a direction normal
to the flow direction (and also to the magnetic field direction).  However, the present particle
does not exhibit a strong directional characteristic, which is one of the typical properties for
the previous particle with a magnetic moment parallel to the particle axis.  That is, the
particle can rotate around the axis of the magnetic moment, although the magnetic moment
nearly points to the field direction.  The viscosity significantly increases with the field
strength, as in the previous particle model.  The particle of a larger aspect ratio leads to the
larger increase in the viscosity, since such elongated particles induce larger resistance in
a flow field.   The diffusion coefficient under circumstances of an applied magnetic field is
in reasonable agreement between theoretical and experimental results.     

1. INTRODUCTION

Magnetic fluids (or ferrofluids) [1], magnetorheological (MR) suspensions [2], and
electrorheological (ER) fluids [2] are functional fluids, which are made artificially to exhibit
their functional properties under certain circumstances.  These functional fluids are
generated by dispersing functional particles, which respond to an external magnetic or



electric fluid, in a base liquid.  Spherical particles have generally been used as such
functional particles, but magnetorheological or electrorheological effects of such
dispersions cannot be obtained signif icantly.  Large magnetorheological or
electrorheological effects may be inevitable from a fluids engineering application point of
view. In ER fluids, liquid crystals are attempted to be used in order to improve
electrorheological effects [3]; such ER fluids with liquid crystals may exhibit sufficient
electrorheological effects for applications in fluids engineering fields.  Similarly,
magnetorheological fluids with ferromagnetic rodlike particles may be expected to exhibit
significant magnetorheological effects in an external magnetic field      

From these backgrounds, our research group has been conducting a series of
systematic studies concerning the behaviors of ferromagnetic particles in a dispersion
under circumstances of an applied magnetic field as well as a flow field.  First, we have
studied the particle orientational distribution and rheological properties in a dilute dispersion
in which particle-particle interactions are negligible [4,5].  Then, we have expanded such
a study to a non-dilute dispersion, in which the interactions of the particle of interest with
other particles in its same cluster are taken into account by means of the mean field
approximation [6,7].  Furthermore, we have applied the mean field approximation to a
dense dispersion in order to take into account the magnetic interactions with particles
belonging to the neighboring clusters [8].  In these studies, we have used the model
particle, for a  rodlike ferromagnetic one, which has a magnetic moment in the particle axis
direction.  

For a dispersion, which is composed of rodlike particles with a magnetic moment
normal to the particle axis, such as hematite particles [9-16], these particles are expected
to incline in the direction normal to the magnetic field and exhibit different behaviors in a
magnetic and flow fields.   Hence, if we can control the behaviors of such particles in a flow
field by an applied magnetic field, a functional fluid composed of such particles may be very
attractive from an application point of view.  However, studies concerning the behaviors of
rodlike particles with a magnetic moment normal to the particle axis in a flow and magnetic
fields, have not sufficiently been conducted theoretically, nor experimentally.

The present study, therefore, considers a dilute dispersion which is composed of
ferromagnetic rodlike particles with a magnetic moment normal to the particle axis such as
hematite particles, and investigates theoretically rheological properties and the orientational
distribution of such dispersions under circumstances of an external magnetic field as well
as a simple shear flow.  Additionally, we attempt to clarify the dependence of the diffusion
coefficient on the magnetic field strength, which helps us to understand the sedimentation
phenomenon of these rodlike particles in the gravity field.  Furthermore, the present
numerical results are partially compared with experimental data obtained by another
different study.

2. PARTICLE MODEL 



Uµ0mH , Tmµ0m×H , (1)

As shown in Fig.1 [16], hematite particles observed experimentally have a nearly
spheroidal shape, so that we adopt a spheroidal particle model shown in Fig. 2 as a
ferromagnetic rodlike particle.   We use the notation e for the unit vector denoting the
particle direction, m (=mem) for the magnetic moment which is normal to the particle axis,
and em for the unit vector denoting the magnetic moment direction.  For this particle model,
the interaction energy U between such a particle and a uniform applied magnetic field H,
and the torque acting on the particle, Tm, are written as

in which µ0 is the permeability of free space.  

For the present particle model with a magnetic moment normal to the particle axis,
one of the significant features is that the direction of the magnetic moment is never uniquely
determined for a given particle direction, which is in contrast to the previous particle model
with a magnetic moment along the particle axis.  That is, the magnetic moment has the
freedom of rotating around the particle axis to change its direction for a given particle
direction.  Hence we have to adopt a certain modeling concerning the direction of the
magnetic moment for advancing the present analysis.  Since we here consider the
spheroidal particle with a large aspect ratio sufficiently apart from a spherical shape, it may
be assumed that the characteristic time of the rotational motion around the particle axis is
sufficiently shorter than that of the rotational motion around a line normal to the particle
axis.  The present study, therefore, uses such a particle model that the magnetic moment
inclines in a direction which gives rise to the minimum of the interaction energy between the
magnetic moment and an applied magnetic field for a given particle direction.  Now we
show the expression for the unit vector em denoting the direction of the magnetic moment.

FIG.1.  Electron microscopy image of a hematite particle      FIG.2. Particle model and system of 
dispersion ( (l, d)=(0.45±0.05, 0.09±0.01) µm ).                  coordinates.
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With the definition of the coordinate system as shown in Fig. 2, the unit vector
denoting the particle direction, e, can be expressed as

in which (δx,δy,δz) are the fundamental vectors of the orthogonal coordinate, and the
following simplified notations have been used: S=sinθ,C=cosθ,s=sinφ, and c=cosφ.  The
body-fixed XYZ- coordinate of the particle can be obtained after the original xyz-coordinate
system is rotated  around the z-axis by the angle φ, and then rotated around the y-axis of
the transformed coordinate by θ.  In the new coordinate system, the Z axis coincides with
the particle axis.  The two unit vectors normal to each other and also to the particle axis,
e⊥1 and e⊥2, can be obtained by setting (X, Y, Z)=(1,0,0) and (0,1,0) in the above-
mentioned transformation:

Using these unit vectors, the direction of the magnetic moment, em, which gives rise to the
minimum of the interaction energy with a magnetic field, can finally be expressed as 

It is noted that the present study assumes a magnetic field to be applied along the x-axis,
i.e., H =Hδx.  

3. THE BASIC EQUATION FOR THE ORIENTATIONAL DISTRIBUTION  FUNCTION 

There are three kinds of torques acting on the particle: the torque due to the magnetic
force, Tm, the torque due to the rotational Brownian motion,TBr, and the torque due to the
shear flow, Tfl .  Since the inertia term is negligible for usual colloidal dispersions, the
governing equation for the rotational motion of particle can be derived from the balance of
torques as 

The torque due to the rotational Brownian motion and the torque due to the shear flow
are written, respectively, as 

in which Ψ is the orientational distribution function and will be defined in Sec.4,  k is
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Boltzmann’s constant,  T is the absolute temperature of fluid,  Ω and E are the rotational
velocity vector and the rate-of-strain tensor of a simple shear flow, respectively, ηs is the
viscosity of the base liquid,  is called Eddington’s epsilon ( the three-rank tensor), I is the
unit tensor, and XC,YC and YH  are resistance functions that are dependent only on the
particle shape. Also, the expression for Tm has already been shown in Eq. (1). 

If  Eqs. (1),(6), and (7) are substituted into Eq.(5), we obtain the following equation:

If we multiply the both sides of Eq.(8) by (×e) and solve it for (ω×e),  the equation giving the
change in the particle direction  is obtained as

In the derivation of this equation, the following relations have been used:

in which m=｜m｜, H=H , and h=H/H (=δx  in the present study), as defined previously.

4. EQUATION OF ORIENTATIONAL DISTRIBUTION FUNCTION

As shown in Fig.2, if the direction of the particle is described by the zenithal angle θ
and the azimuthal angel φ, the orientational distribution function Ψ is defined such that the
probability of the particle being found in a range (θ,φ) to (θ+dθ,φ+dφ) is written as

.  Using this definition of the orientational distribution function, the averageΨ (θ,φ,t )sinθdθdφ
value of an arbitrary quantity G, which is dependent on the particle direction, is expressed
as

The average viscosity and diffusion coefficient will be evaluated later with this
expression.
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The basic equation for the orientational distribution function can be derived using the
equation of continuity [17] and the equation for   in Eq. (9).  It is finally expressed as 

Several relations, shown in Ref. [4], have been used in deriving Eq. (12).  It is noted that
Dr=kT/ηsYC is called the rotational diffusion coefficient.

In the present study, we consider a problem in which the particles move in a simple
shear flow in the x-axis direction under circumstances of a magnetic field applied in the x-
axis direction.  In this case, the flow velocity U, the angular velocity of the fluid  Ω, and the
rate-of-strain tensor E without particles are written as

in which  is the shear rate of the simple shear flow.  If we take into account that YH/YC  isγ
nearly equal to unity for rp (=l/d) »1 in the case of axisymmetric particles, Eq. (12) can finally
be expressed as 

in which the expressions for the operators, Λ and Ωs, have already been shown in Ref. [17],
and the operator Ωmx is defined as follows:

The non-dimensional numbers appearing in Eq. (14),  Pe and ξ, are expressed as
, respectively.  Pe is called the Péclet number and means the ratioPe γ /Dr and ξµ0mH /kT

of the influence of the representative hydrodynamic shear force to that of the representative
Brownian force.  Similarly, ξ means the ratio of the representative magnetic particle-particle
interaction energy to the thermal energy.  It is noted that the following relations have been
used in deriving Eq. (14).



a (1)
i,j
Ψi1,jΨi1,j

2Δθ

Ψi1,j2Ψi,jΨi1,j

(Δθ)2
a (2)

i,j
Ψi,j12Ψi,jΨi,j1

(Δφ)2

Pe b (1)
i,j Ψi,jb (2)

i,j
Ψi1,jΨi1,j

2Δθ
b (3)

i,j
Ψi,j1Ψi,j1

2Δφ

ξ c (1)
i,j Ψi,jc (2)

i,j
Ψi1,jΨi1,j

2Δθ
c (3)

i,j
Ψi,j1Ψi,j1

2Δφ
 0,

(17)

a (1)
i,j 

Ci

Si

, a (2)
i,j 

1

S 2
i

, b (1)
i,j sjcj(2C 2

i S 2
i 2) ,

b (2)
i,j sjcjSiCi , b (3)

i,j s 2
j , c (1)

i,j  (C 2
i c 2

j s 2
j )1/2(12S 2

i c 2
j ) ,

c (2)
i,j  (C 2

i c 2
j s 2

j )1/2SiCic
2
j , c (3)

i,j  (C 2
i c 2

j s 2
j )1/2sjcj .

(18)

ηM
yx (M1)  ηM

yx (M )

ηM
yx (M )

< 1×108 , (19)

5. SOLUTION OF THE BASIC EQUATION OF THE ORIENTATIONAL DISTRIBUTION
FUNCTION

In the previous papers [4-8], the orientational distribution function was expanded in
terms of spherical harmonics, and the basic equation for this distribution function was
solved by means of Galerkin’s method to get approximate solutions.  In the present case,
however,  the basic equation in Eq. (14) has the irrational numbers of sine and cosine
functions and, therefore, is very complicated to be solved by Galerkin’s method.  Hence,
we adopt the numerical analysis approach based on the finite difference method in the
present study.  If we use the subscripts for specifying the position (θ, φ) on each grid point,
for example, Ψi,j  for Ψ(θ,φ) and Ψi+1,,j+1 for Ψ(θ+Δθ, φ+Δφ), then Eq. (14) can be finite-
differentiated as 

in which 

Equation (17) is numerically solved by the method of successive approximation with
taking the uniform distribution, Ψ=1/4π, as an initial condition.  The following convergence
criterion in the successive approximation procedure has been used: 

in which  is the viscosity and defined in Sec. 6.2, and (M) is the value of  which isηM
yx ηM

yx ηM
yx

evaluated  using M-th approximation Ψ(M). 

6. RESULTS

6.1. Particle Orientational Distribution

Figures 3 to 5 show the particle orientational distribution function for three different



cases of the Péclet number: Fig.3 is for Pe=1, Fig.4
for Pe=5, and Fig.5 for Pe=20.  In each figure, three
different distributions are shown for three cases of
the magnetic field strength, (a) ξ=1,  (b) ξ=5, and (c)
ξ=20.  It is noted that a sharper peak at θ=90° and
φ=90° means a significant inclination of the particle
in the direction normal to the shear flow direction;
an additional schematic figure concerning the state
of the particle inclination for H= is added to Figs.
3(c), 4(c), and 5(c) to make the reader understand
the results more straightforwardly.  Also, unless
specifically noted, all results which will be shown
bellow were obtained for rp=5.  

For the case of Pe=1, shown in Fig. 3, the
rotational Brownian motion has the same order of
the influence as the shear flow on the particle
orientational distribution.  Hence, if the influence of
the magnetic force is also of the same order, the
particle does not have a specific favorite direction,
which is clearly shown in Fig.3(a).  As the strength
of the magnetic field increases from ξ=5 to 20, as
shown in Figs.3(b) and (c), the orientational
distribution function comes to exhibit a sharper
peak at a position nearer to φ=90°.  For a very
strong magnetic field such as ξ=20, shown in Fig.
3(c), the magnetic field significantly dominates the
other two mechanisms, and, therefore, the
magnetic moment almost points to the magnetic
field direction (or the flow field direction).  This
leads to a sharp peak at a position nearer to φ=90°.
It should be noted that the direction of the rodlike
particle is never restricted to θ=90°.  In the previous
studies [4-8], in which the rodlike particle has a
magnetic moment along the particle axis, the
orientational distribution function has a strong
directional characteristic and has a sharp peak at
θ=90° and φ=90° for a strong magnetic field, which
is quite contrast to the result in Fig. 3(c).  Hence,
the above-mentioned characteristic concerning the
orientational distribution function may be one of the
significant features for the present particle model.
That is, for a strong magnetic field, the magnetic
 moment is significantly restricted  to the magnetic       FIG.3. Orientational distribution function
 field direction (x-direction).   Under these circum-          for Pe=1: (a)  ξ=1 ; (b)  ξ=5 ; (c)  ξ =20.

a

c

b



stances, however, the particle can rotate around the x-axis freely to a certain degree unless
the influence of the shear flow dominates the phenomenon.   This induces a wide-spreaded
sharp peak at a position of  φ=90° and θ=0～180°, shown in Fig. 3(c), without a significant
directional characteristic of  a one-point sharp peak.

For the case of a larger shear rate Pe=5, shown in Fig.4, the influence of the shear
flow comes to appear and gives rise to a peak around at φ=35° and θ=90° when the

       FIG.4. Orientational distribution function                    FIG.5. Orientational distribution function 
       for Pe=5: (a)  ξ=1 ; (b)  ξ=5 ; (c)  ξ=20.                       for Pe=20: (a)  ξ=1 ; (b)  ξ=5 ;  (c)  ξ=20. 

a a

b b

c c
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magnetic field is weak such as ξ=1.  As the magnetic field increases to ξ=5 and 20, the
influence of the magnetic field comes to be dominant, so that the shape of the orientational
distribution almost agrees with that shown in Fig. 3.    

Figure 5 is for the case of a further larger shear rate of Pe=20, so that the influence
of the simple shear flow comes to appear significantly.  Since the shear flow significantly
dominates the other two mechanisms for the result shown in Fig. 5(a), a sharp peak arises
at a position nearer to the shear flow direction. This characteristic is in qualitative
agreement with the results, shown in the previous papers [4-8], for the rodlike particle with
a magnetic moment in the particle direction.  With increasing the magnetic field from ξ=1,
this peak arises at a position nearer to θ=90° without a significant increase in the height of
the peak.  As already pointed out, the magnetic moment is more significantly restricted to
the magnetic field direction under circumstances of a stronger magnetic field, and the
rodlike particle, however, has a sufficient freedom to rotate around the axis of the magnetic
moment together with unchanging the direction of the magnetic moment.  Since the
influence of the shear flow is of the same order of the magnetic field for Pe=20, shown in
Fig. 5(c), the height of the peak gradually decreases with changing values of θ from  90°
to 0 for a constant value of φ which gives a maximum of the orientational distribution.  This
is in significant contrast to the result in Fig. 3(c).  Figures 3(c), 4(c), and 5(c) clearly show
that the peak comes to arise at a position nearer to φ=0 with increasing values of the Péclet
number for the same value of ξ.  This is because the influence of the shear flow becomes
significant with values of Pe, compared with that of the magnetic force; it is noted that, in
the limiting case of Pe=, the particle points to the flow direction of φ=0.  
  
6.2. Rheological Properties

We show the equation of the viscosity before we proceed to the discussion of the
results. In the present study, we concentrate our attention on the influence of the magnetic
properties of the particle on the viscosity. The stress tensor τm due to the magnetic
properties of the particle is expressed as [17]

in which Fi
m is the magnetic force of the other particles acting on particle i and zero in the

present dilute assumption, Ti
m is the torque acting on particle i due to the applied magnetic

field, and n is the number density of particles.  For the simple shear flow given in Eq.(13),
the shear stress  τyx

m can be expressed as 

From this equation, the shear viscosity   ηyx
m  is written as 

In the present paper, we discuss the viscosity ηyx
M  which is obtained by non-

dimensionalizing ηyx
m  by the viscosity of the base liquid ηs, and further dividing this quantity
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by nVp.  That is, 

in which Vp is the volume of the spheroidal particle.  The value of YC/Vp is dependent on the
aspect ratio rp and we here assume a sufficiently large aspect ratio, i.e., rp »l.  In this
situation, the value of YC/Vp is given for a spheroidal particle as follows [17]:

in which 

Figure 6 shows the influence of the magnetic field strength on the viscosity for three
cases of the Péclet number, Pe=1, 5, and 20.  Each curve shows that the viscosity exhibits
a significant increase as the magnetic field becomes strong, and also that this significant
increase starts at ξ1 where the influence of the magnetic field comes to dominate that of
the rotational Brownian motion.  According to the previous results concerning the
orientational distribution, the rodlike particle is more strongly restricted to a direction normal
to the flow direction.  This inclination of the particles induces more significant resistance in
a flow field to yield a large increase in the viscosity.  In the case of the same value of ξ/Pe,
a larger increase in the viscosity is obtained for a larger value of Pe.  This is because,
under these circumstances, the influence of magnetic forces is more dominant than the
influences of the shear flow and the rotational Brownian motion.

                 FIG.6. Viscosity as a function of ξ/Pe.                         FIG.7. Influences of particle aspect
                                                                                                       ratio on viscosity for Pe=10.
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The results in Fig. 7 were obtained for three cases of the particle aspect ratio, rp=5,
10, and 15 for Pe=l0.  As in the previous case of the particle with a magnetic moment along
the particle axis  [4], the rodlike particle with a larger aspect ratio exhibits a more significant
increase in the viscosity as the magnetic field becomes strong.

The increase in the viscosity due to the magnetic properties relative to that of the base
liquid,  ηyx

m*, is obtained by multiplying ηyx
M by the volumetric fraction φV  (=nVp).  We may,

therefore, conclude from these results concerning the viscosity that, in order to generate
a new functional fluid using ferromagnetic rodlike particles, particles with a large aspect
ratio are desirable to be dispersed or suspended in a dense situation.  Such suspensions
or dispersions can be expected to exhibit a high magnetorheological effect under
circumstances of an applied magnetic field. 
    
6.3. Diffusion coefficients 

Besides the application of ferromagnetic rodlike particles to fluids engineering fields,
they are expected to be applicable to the surface change technology of the material
surface, in which the orientations of rodlike particles are needed to be controlled under
circumstances of an applied magnetic field, and then needed to be made to attach the
material surface effectively in order to exhibit functional properties.  In this case, we may
need to control the orientation of particles in the sedimentation process under
circumstances of gravity.  In the present study, therefore, we concentrate our attention on
the diffusion coefficient, which is the important parameter for determining the properties of
the particle movement in an applied magnetic field and the gravity field.

If we use the notations  and for the diffusion coefficients of the parallel andD T
 D T



normal movements to the particle axis, respectively, the expressions of these coefficients
are expressed as [17]

If the diffusion coefficients are non-dimensionalized by kT/(6πaηs, a=l/2), and the
expressions of XA and YA [17] are substituted into Eqs. (26), then the expressions of D T



and  are written as D T


We now consider a phenomenon that the rodlike particle settles in the  x-direction with
the rotational motion under circumstances of an applied magnetic field in the x-direction.
If the magnetic field is sufficiently strong, the particle should incline in a direction normal to
the direction of the motion (or the x-direction) and settles with such an inclination.  On the
other hand, if the magnetic field is very weak, the particle should move with a random
inclination due to the rotational Brownian motion.  For a general case, the particle moves
in the x-direction with a certain orientational distribution.  If the diffusion coefficient for this
general case is denoted by , the expression can be written as [17]D T

ave
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in which ··· means the average evaluated using the orientational distribution function
which is obtained for a given magnetic field strength.  If there is no external magnetic field
and the system is in equilibrium, the orientational distribution is expressed as Ψ=1/4π, and,
therefore, Eq. (28) reduces to =  in this situation; we use the notationD T

ave (D T
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 )/3 D T
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for this equilibrium diffusion coefficient.   The value of   for an arbitrary magnetic fieldD T
ave

strength can be obtained by solving Eq. (17) for the limiting case of Pe→0 and evaluating
the average in Eq. (28) with this numerical solution of the orientational distribution function.
It is noted that this average procedure is justified under the situation that the characteristic
time of the rotational Brownian motion is sufficiently shorter than that of the particle
sedimentation under the gravity field.

Figure 8 shows the result of the diffusion coefficient  , which was obtained fromD T
ave

Eq. (28).  The orientational distribution approaches the equilibrium distribution as the
magnetic field becomes zero, so that  converges to  for ξ→0.  Since the particleD T

ave D T
eq

orientation comes to be restricted to a direction normal to the x-axis,   converges toD T
ave

 with increasing values of ξ.  The results seem to be independent of the particle aspectD T


ratio, and this is straightforwardly shown in the following.  From Eq. (28) and the expression
for , we can obtain the expression for the quantity of the ordinate in Fig. 8 as D T

eq

FIG.8. Influences of magnetic field on                     FIG.9. Experimental results concerning the strength
diffusion coefficients.                                               dependence of the mobility of particles on the magne-
                                                                                  tic field strength (dispersion A and B for particles with
                                                                                  (l, d)=(0.45±0.05, 0.09±0.01) µm and (l, d)=
                                                                                  (0.48±0.08, 0.11±0.02) µm, respectively)
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In the present limiting case of  →0 (or Pe→0), the average on the right-hand side in Eq.γ
(29) depends only on ξ, but not on the particle aspect ratio, which is clear from Eq. (14).
Hence, it is quite reasonable that the results in Fig.8 is independent of the aspect ratio.  

Figure 9 shows the relationship between the mobility velocity of the rodlike particles
and the magnetic field strength.  These results were experimentally obtained by evaluating
the velocity of the interface of a dispersion, which is composed of hematite particles shown
in Fig. 1, by means of the electrical mobility equipment facility [16]; the dispersions A and
B are significantly dilute and the volumetric fraction of particles is about 0.002 %  for both
cases.  How the rodlike particle orients under circumstances of no external magnetic field
is not clear at the moment, which is a subject to be clarified in future.  If large particles and
hydrodynamic interactions between them are more dominant than the rotational Brownian
motion, it may be possible to use the diffusion coefficient  for the case of ξ=0.  On theD T



other hand, if hydrodynamic interactions between particles are not significantly important
and the rotational Brownian motion is dominant, we may use   for the case of  ξ=0.D T

eq
According to this consideration, Fig. 10 is obtained by replotting the result shown in Fig. 8
for a straightforward comparison with the experimental result shown in Fig. 9; Fig. 10(a) is
for the former case and Fig. 10(b) is for the latter case.  The quantity of the ordinate in each
figure is written as 

FIG.10. Calculation results of diffusion coefficients for comparison to the results in Fig. 9:
          (a) and (b)  as a function of ξ.D T

ave D T
 D T
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The result in Fig. 9 is in quantitatively reasonable agreement with the theoretical result in
Fig. 10(a) except the small value range of ξ.  In contrast, a good agreement between the
experimental and numerical results cannot be obtained in Fig. 10(b).  As already pointed
out, from Figs. 10(a) and 10(b), it seems to be reasonable that the movement parallel to the
particle axis is regarded as the motion for ξ=0; otherwise, such a significant change in the
diffusion coefficient in the experimental results cannot be obtained.  Other mechanisms
concerning the change in  may be hydrodynamic interactions between particles and theD T

ave
distribution of the particle size.  Finally, we may conclude that it is possible to control the
sedimentation speed by means of an applied magnetic field.  This characteristic may be
very important if we consider the development of surface-changing techniques using
ferromagnetic rodlike particles.  

7. CONCLUSIONS

We have investigated the influences of the magnetic field strength, shear rate, and
random forces on transport coefficients such as viscosity and diffusion coefficient, and also
on the orientational distributions of rodlike particles of a dilute colloidal dispersion.  This
dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment
normal to the particle axis.  In the present analysis, these spheroidal particles are assumed
to conduct the rotational Brownian motion in a simple shear flow as well as an external
magnetic field.  The basic equation of the orientational distribution function has been
derived from the balance of the torques and solved numerically.  The results obtained here
are summarized as follows.  For a very strong magnetic field, the rodlike particle is
significantly restricted in the field direction, so that the particle points to a direction normal
to the flow direction (and also to the magnetic field direction).  However, the present particle
does not exhibit a strong directional characteristic, which is one of the typical properties for
the previous particle with a magnetic moment parallel to the particle axis.  That is, the
particle can rotate around the axis of the magnetic moment, although the magnetic moment
nearly points to the field direction.   The viscosity significantly increases with the field
strength, as in the previous particle model.  The particle of a larger aspect ratio leads to the
larger increase in the viscosity, since such elongated particles induce larger resistance in
a flow field.   The diffusion coefficient under circumstances of an applied magnetic field is
in reasonable agreement between theoretical and experimental results.     
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