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I.  INTRODUCTION 
Titania nanoparticle deposits have various applications such as gas sensors1; 2 , 

photocatalysts 3; 4, optical filters5, and photovoltaic electrodes 6; 7  There have been a number 
of  experimental and simulation studies on the influence of deposit morphology on 
photocatalytic activity.  For example, heat sintered titania films were shown to have a more 
homogeneous morphology and higher electrical density than pressure sintered titania films.8 
The result was attributed to the heat sintered films being well connected.  Barbe et al.7 showed 
that the structure of the titania films influenced the photovoltaic response of the Grätzel solar 
cell.  A study of titania nanoparticle size on electron diffusion by Nakade et al.9 showed that the 
electron diffusion coefficient increased with particle size. Hu et al’s10 experimental study of 
influence of particle coordination number in nanoporous titania films and the solar cell 
performance revealed that the presence of small pores slows down the diffusion of electrolyte, 
as well as that  low and very high particle coordination numbers result in lower solar cell 
efficiency.  In simulations of the microstructure of nanoparticle films, with emphasis on titania 
films for solar cells, Lagemaat et al.11 showed that increasing the porosity of the film decreases 
the coordination number of each particle.  In another simulation study, the particle connectivity 
within the deposit was also shown to influence electron transport in solar cells.12   Results of 
Benkstein et al’s13  study on dye sensitized titania solar cells agree with Lagemaat et al on the 
decrease in coordination number with increase in porosity; further more, they show that the 
average number of particles visited by electrons increases with porosity. A Brownian dynamics 
simulations study of interparticle interactions on morphology of nanoparticle deposits by 
Kulkarni and Biswas14 revealed that van der Waals and Coulombic interactions influence the 
morphologies of the nanoparticle deposits. 

 
In the above-mentioned studies of titania deposits, the focus is mainly on how the 

deposit morphology affects their photocatalytic properties.  Studies have shown that particle 
coordination number, surface area, particle size, particle connectivity and film porosity all affect 
electron and electrolyte transport within the solar cell. It is not far fetched to assume that these 
same parameters will affect the mechanical properties of the films and solar cells. With the 
increasing number of applications for nanostructured deposits, it will be essential to have an 
understanding and control of the mechanical properties of the deposits. The mechanical 
properties of the deposits can then be optimized for desired applications.  The mechanical 
properties of nanoparticle deposits have been shown in a few studies to be different from the 
solid bulk.  Ogunsola et al.15 experimentally estimated the Young’s modulus of titania films to 
be 2.6 ± 1.0 MPa, significantly lower than bulk values for solid titania (230 GPa).  Friedlander 
et al.16 characterized the nanomechanical properties of graphitic nanoparticle chain aggregates 



by AFM  and found the Young’s modulus value for single chain aggregates to be in the range 
of 3.0 to 8.8 MPa with the bulk value for graphite ranging between of 2.1 to 18.6 GPa.   In both 
cases, the experimentally determined Young’s modulus values were orders of magnitude less 
than bulk values.   

 
Various groups have extensively studied aggregate and deposit growth. Meakin17 

studied the growth of aggregates in which clusters combined via linear trajectories. He 
concluded that the fractal dimensionality of the resulting aggregate of a cluster-cluster 
aggregation via linear trajectories is similar to that via Brownian motion. Meakin also used an 
off-lattice ballistic aggregation to deposit particles on a surface. He showed that the tangent 
rule for the orientation of columnar microstructures was only qualitatively correct.18  Rosner et 
al.19 used a combination of deterministic and random motion to deposit particles. The height 
and porosity of the deposit was shown to depend on the Peclet number in a power law 
manner. In a like manner, Giona and Patierno20 used the same technique as Rosner et al. to 
study the structural properties of particle deposits and determined that surface and topological 
properties of deposits are fractal in nature. Kulkarni et al.14 used Brownian dynamics 
simulations to predict the morphology of nanoparticle deposits in the presence of van der 
Waals and coulombic interactions.  Open structured deposits were generated in the presence 
of van der Waals interactions and increasing the electrical field strength generated more 
compact deposits. Simulation of aggregates is based on whether the aggregate grows by 
either a monomer-cluster or a cluster-cluster mechanism. The monomer or cluster moves 
towards another monomer or cluster via reaction-limited, ballistic or diffusion-limited motion. 
Different aggregates that are fractal in nature can be generated with various fractal dimensions 
to indicate the compactness of the aggregate.  

 
In this paper, we simulate fractal aggregates by a monomer-cluster and diffusion-limited 

method. Deposition is simulated using a Monte Carlo approach in which the aggregates are 
randomly moved towards the substrate sequentially. An equivalent continuum method via finite 
element analysis is further applied on the deposit to calculate the Young’s modulus of the 
deposit. We report results of influence of nanostructure on Young’s modulus of deposits 
composed of titania nanoparticle aggregates.  

 

II.  SIMULATION APPROACH 
A. Aggregate Simulation 

The first particle in the aggregate is created by randomly choosing x and z positions and 
fixing the y position from a chosen distance from the substrate. A second particle is attached to 
the already created first particle in a random manner. Two of the Cartesian coordinates are 
randomly chosen via a random number generator and the third Cartesian coordinate is 
calculated to ensure the interparticle distance between the two particles is equal to the particle 
diameter.  Based on the description above, the attaching particle can be attached to the 
created particle in 24 different ways. The other particles making up the aggregate are attached 
by first, randomly choosing a particle out of the already generated aggregate and secondly, 
attaching in the same manner used above for the second attached particle.  Each aggregate 
generated can have identical number of particles or a range of numbers of particles. The 
aggregate size is defined as the number of particles in the aggregate. The average 
coordination number of each aggregate is calculated using the average of the particle 



coordination number. To characterize the aggregates, radius of gyration, fractal dimension and 
fractal prefactor are determined from equations 1 and 2. 
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where ri represents the distance between the center of the particle  and the center of mass of 
the aggregate.  
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where Np represents the number of particles in aggregate, dp is the diameter of a particle, Rg is 
the radius of gyration, Df and kf are the fractal dimension and fractal prefactor of the aggregate 
respectively. 
 
 
B. Deposit simulation 

The growth of the deposit is by random motion of the aggregate towards the substrate. 
The surrounding fluid is assumed to be air and the particle concentration is dilute, so there is 
no interaction between aggregates until they collide on the substrate. An aggregate is 
generated and released from a height H above the substrate. The generated aggregate 
continuously moves and collision is checked for between the particles in the incoming 
aggregate and deposited aggregates/substrate particles.  Once a collision occurs, represented 
by an overlap between the particles, the aggregate is said to be deposited and the overlap 
removed mathematically along the axis joining the particle centers of the collided particles. The 
motion of the aggregates is simulated on a substrate of length L and width W.  When the 
aggregate moves out of the sidewalls of the substrate, periodic boundary conditions are 
applied, in which the aggregate leaving the sidewall on one side is reintroduced on the 
opposite sidewall. The porosity of the deposit grown was calculated on a box (approximately 
6% of deposit box) inside the deposit to remove any edge effects and was defined as: 
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where nactual is defined as the number of simulated particles in the volume and npossible is 
defined as the number of particles that can fill the volume and is given by 
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C. Continuum Finite Element Analysis 
 The methodology used is based on an equivalent-continuum method (ECM) developed 
by Odegard et al.21 ECM is used to determine the bulk level mechanical properties of a 
material by combining computational chemistry and solid mechanics. Odegard et al. used the 
ECM method to determine mechanical properties of a nanostructured material comprised of 
atoms. We extend this method here to determine mechanical properties of a nanostructured 
material comprised of nanoparticles. 
 



 
This approach represents the particles and the bonds between the particles as an 

equivalent mechanical pin jointed truss model. The truss model is then substituted with an 
equivalent-continuum model, which is representative of the nanoparticulate structure. The 
equivalent continuum model is strained and the Young’s modulus is calculated from the strain 
energy and solid mechanics constitutive laws. This method is computationally fast as finite 
element analysis is applied on only one structure. Fig. 1 illustrates how the equivalent-
continuum model is representative of the nanostructured model. 

 

Fig. 1.  Equivalent-continuum model representation of the nanoparticulate film. 
 

 In the deposit structure, it is assumed that there are only two values for the bond 
strengths; one representing the strong chemical bond between the particles in an aggregate 
and the other representing the weak Van der Waals bond strength between particles from 
different aggregates. This is illustrated in Fig. 2. 
 

Fig. 2.  Bond distribution in the nanoparticulate film. 
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The equivalent-continuum model involves the following: 

 Nanopotential Energy: The potential energy of the nanoparticulate deposit, Λn, is calculated 
as:   

          ∑∑ +=Λ vdwchen EE                                                                                           (5) 
where Eche, defined as the chemical bond energy, is assumed to be a value that is two orders 
of magnitude greater than the van der Waals bond energy. This is a first approximation and is 
consistent with what has been reported in literature.22 The value of chemical bond energy is 
assumed to change linearly with particle diameter. Evdw, defined as the van der waals bond 
energy, is calculated from the theory of Hamaker23 as shown in equation 6 

            

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++
++

+
+

−=

12
22

12
1

2
112 2

2

22 xx
xxLn

xxxx

AE vdw                                                     (6)                 

             
p

o

d
a

x =                                                                                                                      (7) 

where dp is the particle diameter, ao is an assumed interparticle distance and A, the Hamaker 
constant. 
 
Equivalent Truss Model: The mechanical strain energy, Λt, of the pin jointed truss model in 
which each truss member/rod represents a chemical bond of type a or van der Waals bond of 
type b between the particles is calculated as shown below 

        
( ) ( )∑∑ −+−=Λ b

bbbb

a

aaaa
t

R
RrEA

R
RrEA

22

22

                                                   (8)     

with Aa being the cross sectional area of the rod representing a chemical bond, Ea the Young’s 
modulus of rod a, ra and Ra are the deformed and undeformed lengths of rod a, Ab the cross 
sectional area of the rod representing a van der Waals bond, Eb the Young’s modulus of rod b, 
rb and Rb are the deformed and undeformed lengths of rod b. 

To represent the mechanical behavior of the nanoparticles with the truss model, 
equations 5 and 8 must be equated using the Young’s modulus of each rod by introduction of 
the nanopotential energy into the Young’s modulus. The strain energy of the truss model 
(equation 8) is divided into a chemical component and a van der Waals component as shown 
in equations 9 and 10 respectively. 
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An equation for the Young’s modulus of the rods can be obtained by solving equations 9 and 
10, for Ea & Eb as shown in equations 11 and 12.  
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The equations for Young’s modulus for the rods are then replaced in the equivalent truss 
equation (equation 8). A finite element model is then used to calculate the resultant 
mechanical strain energy in the equivalent-truss structure, which is given by 
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 Continuum Model: the mechanical properties of the continuum (a solid rectangle as shown in 
Fig. 1) are determined by equating  Λt ≡  Λc   under identical loading conditions (strain).  Λc is 
the mechanical strain energy of the continuum model.  

     2
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where V is the volume of the rectangle, σij is the stress component and Eij is the strain 
component. Applying finite element analysis to the continuum structure gives 
           2eEL

c π=Λ                                                                                                                  (15)    
where EL is the longitudinal Young’s modulus and e is the strain along the x-axis. Straining the 
truss elements changes the interparticle distance between the particles (the truss length), 
which results in a strain energy.  The strain energies of the truss elements are calculated and 
summed as the mechanical strain energy of the continuum.  The Young’s modulus is 
calculated from the total strain energy and equation 15.  All parameter values used are listed in 
Table 1. 

 

Table I.  Parameter values used in simulations. 

PARAMETER VALUES 

Hamaker constant 164.9 x 10-21 J 

Chemical bond energy 3.5 x 10-21 J 

Strain  0.01 

Chemical bond interparticle distance 0.1 nm 

van der Waals bond interparticle distance 0.4 nm 

 

 

III.  RESULTS AND DISCUSSION 
In the simulation, the fractal dimension, fractal pre-factor and average coordination 

number of the aggregates increased with aggregate size. The fractal dimension increased from 



1.7 to 2.9.  The fractal pre-factor increased from 6.2 to 9.0, while the average coordination 
number of the particles in each aggregate increased and stabilized at 2.02. A visual 
comparism of a simulated aggregate to a titania aggregate generated via an aerosol route, in 
Fig. 3, shows the aggregates are similar in the particles being spherical and with respect to the 
morphology.  

 

 
Fig. 3.  Aggregate morphology generated experimentally and computationally. 

 

Fig. 4.  Nanoparticle deposits obtained from simulation. 

 

50 nm50 nm50 nm50 nm



The deposits shown in Fig. 4 are very porous. The calculated porosity of a deposit 
simulated with particle size as 15 nm and aggregate size of 15 particles is 0.95, which is 
comparable to the 0.98 porosity of titania nanoparticle deposit experimentally deposited by 
Ogunsola et al.15  The above-mentioned porous films of titania composed of nanoparticle 
aggregates were synthesized via gas-to-particle conversion and particle precipitated chemical 
vapor deposition. Indentation using atomic force microscopy, was used to determine the 
Young’s modulus of the synthesized films.  Our deposit simulations were based on achieving 
the same level of porosity and structure in the deposits as had been synthesized, to enable 
comparison of Young’s modulus.  

 
The Odegard continuum method was applied to a deposit with particle size of 15 nm, 

aggregate size of 15 particles and porosity of 0.95. The calculated average Young’s modulus 
is 6.2 ± 1.4 MPa. This result was compared to Young’s modulus estimated from indentation 
measurements of a titania deposit with similar parameters. The experimentally generated 
titania deposit had particles that were 17 nm in average diameter. The Young’s modulus 
estimated from the indentation measurements was 2.6 MPa, which is comparable to the 
calculated Young’s modulus of the simulated deposit. The very small difference is attributed to 
the particle size and porosity of the simulated deposit being slightly lower than the 
experimentally generated deposit. This shows that the continuum method is a viable way of 
predicting the Young’s modulus of a deposit of nanoparticles. After validation of the continuum 
method, the effect of particle size, aggregate size and porosity on the Young’s modulus was 
studied. Fig. 5 shows the Young’s modulus of the simulated deposit increasing with decreasing 
particle size. This could be as a result of increase in surface energy with decreasing particle 
size.  In a study of influence of grain size on Young’s modulus, a decrease in grain size led to 
an increase in grain boundary defects, which ultimately resulted in a decrease in Young’s 
modulus.24 Our study is comparable to the results of Dinreville et al.25 They found that the 
effect of surface energy on the elastic behavior becomes more significant when one of the 
dimensions is below 10 nm. The results of our study are comparable to the results of Dinreville 
et al.’s study because our simulated films are made up of particles and not grains. A 
reasonable explanation is that grain boundaries affect materials composed of grains, while 
surface energy affects materials composed of particles. 



 Fig. 5.  Influence of particle size on Young's modulus. 

Fig. 6. Influence of aggregate size on Young’s modulus. 
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However, our results show that aggregate size does not seem to have an effect on 
Young’s modulus as illustrated in Fig. 6. This is perplexing, as it would be expected that 
increasing aggregate size would increase the chemical bonds in the deposit. It could be that at 
high porosities, the aggregate size effect is negligible. Young’s modulus of the deposits 
decreased with porosity reduction as shown in Fig. 7.   

Fig. 7. Influence of porosity on Young’s modulus.  
 
 
Experimental26; 27 and theoretical reports28; 29 in the literature indicate that the young’s 

modulus of a material reduces with increasing porosity. This makes sense as an increase in 
porosity corresponds to a decrease in total bond strength per volume resulting from a 
decrease in material.28 This leads ultimately to a decrease in the Young’s modulus.  

 
The results of this work indicate the importance of structure (particle size and porosity) 

on macroscale properties such as Young’s modulus.  
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IV. CONCLUSIONS 
 Aggregates were simulated via monomer-cluster diffusion limited aggregation. The 
simulated aggregates were deposited via Monte Carlo and a continuum method was applied to 
the resulting nanoparticle deposit to predict the Young’s modulus of the deposit. Young’s 
modulus of titania nanoparticle deposit of particles 15 nm in diameter and aggregate size of 15 
particles was 6.2 MPa, comparable to experimental results for Young’s modulus of titania 
nanoparticle deposits with similar parameters.  Increasing particle size of nanoparticle deposit 
resulted in a decrease in Young’s modulus. However, aggregate size had no noticeable effect 
on the Young’s modulus. Decreasing porosity resulted in an increase in Young’s modulus as 
expected from results reported previously in the literature. 
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