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There are more than 100 distinct types of cancers that can occur in various organs of the human body. 
Research over the last quarter of a century has revealed cancer to be a disease of the genome—mutations 
produce oncogenes and tumor suppressor genes, transforming normal cells into cancerous lesions that 
ultimately invade surrounding tissues and metastasize. In recent years, scientists have tried to understand 
the laboratory and clinical complexities of the disease in terms of a small number of underlying 
principles. Hanahan and Weinberg (2000) suggested in a seminal essay that the normal cells must 
acquire six traits in order to become cancerous: (1) self-sufficiency in growth signals, (2) insensitivity to 
antigrowth signals, (3) evasion of apoptosis, (4) limitless replicative potential, (5) sustained 
angiogenesis, and (6) tissue invasion and metastasis. This has gained widespread acceptance in the 
literature (the Hanahan and Weinberg paper has received over 2000 citations in the literature), and 
several recent modeling efforts incorporate several of these traits (e.g., Spencer et al, 2004). 

The highest fidelity cancer progression models are written in terms of ordinary differential equations 
(ODEs) that track the progression of cancer as a series of mutations characterized by a set of kinetic 
parameters and rate expressions describing mutation, birth, death, and metastatic rates (e.g., Spencer et 
al, 2004). The kinetic parameters are mostly inferred from various sets of experimental data available in 
the literature. While such models have been able to model much of the qualitative observations during 
cancer progression, a drawback of ODE-based models is that they do not track differences between cells 
within each distinct cell population such as the cell age or number of cell divisions for each cell. This is 
a significant limitation, as more realistic expressions for some of the cancer cell kinetic rates are 
strongly dependent on the cell age. 

Population balance models, on the other hand, can and have been used extensively to model 
heterogeneity in noncancerous cell populations (e.g., see Henson, 2003, and citations therein). In this 
work, we propose a population balance model to adequately account for the age and replicative potential 
of cells in order to more accurately model the six-step progression of cancer. The model is extended to 
include spatial variations, using a spatially-varying population balance equation (Hulbert and Katz, 
1964). The model equations are simulated using a high resolution finite volume algorithm (Gunawan et 
al, 2004, LeVeque, 2002), which is followed by sensitivity analysis (Caracotsios and Stewart, 1985) and 
uncertainty analysis for nonlinear distributed parameter systems (Hukkanen and Braatz, 2005) to assess 
which kinetic parameters have the strongest effect on the tumor cell populations and to quantify the 
effects of simultaneous uncertainties. These results are compared to experimental data on the biological 
variability of tumor progression from person to person, and used to assess the extent for which state-of-
the-art cancer progression models are accurate enough for use in optimal chemotherapy studies. 
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