165e Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination

Michael S. Wong, Michael O. Nutt, Kimberly N. Kowalski, and Joseph B. Hughes
Alumina-supported palladium (Pd) catalysts have previously been shown to hydrodechlorinate
trichloroethene (TCE) and other chlorinated compounds in water, at room temperature, and in the
presence of hydrogen. The feasibility of this catalytic technology to remediate groundwater of
halogenated compounds can be improved by re-designing the Pd material in order to increase catalytic
activity. We recently reported the synthesis of Pd supported on gold nanoparticles (Au NPs) of different
Pd loadings (Environ. Sci. Technol. 2005, 39, 1346-1353). In all cases, we found that these catalysts
were considerably more active than Pd NPs, alumina-supported Pd, and Pd-black (62.0, 12.2, and 0.42
L/gPd/min, respectively). There is a synergistic effect of the Pd-on-Au bimetallic structure, with the
material with the highest TCE hydrodechlorination activity (943 L/gPd/min) comprised of Au NPs
partially covered by Pd metal. In this paper, we discuss our efforts to heterogenize these core/shell
nanoparticles for pilot-scale-testing, and to understand the source of catalytic enhancement resulting
from the use of gold.