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ABSTRACT 
Brandani has derived a solution for nonlinear equilibrium on a homogeneous surface 
using the Langmuir isotherm for micropore controlled particles. In this paper a family of 
solutions for heterogeneous surfaces is derived using the Toth isotherm which has a 
heterogeneity parameter t in it. The solution of Brandani when t = 1 is a particular 
member of the family of solutions  

The project novelty is the extension of the literature work of Brandani which covered 
homogeneous surfaces to all surfaces which basically are heterogeneous in nature. 
Brandani showed that ZLC experiments for homogeneous surfaces provide satisfactory 
diffusivities in the long time region of the experiment but that the equilibrium parameters 
are difficult to determine accurately. In this paper, in determining both the diffusivity and 
equilibrium parameters for heterogeneous surfaces due caution should be observed. In 
fact for the heterogeneity parameter t less than 0.5, it is very difficult to determine either 
diffusivity or equilibrium parameters just using the long time region of the experimental 
curve.  

KEYWORDS: nonlinear equilibrium, zero length column, mesopore, macropore 

INTRODUCTION 
The zero length column (ZLC) was introduced to measure the intracrystalline diffusivity, 
by Eic and Ruthven in 1988. Since that time, over 127 papers have been published on the 
technique, and a review was published in 2000 by Ruthven and Brandani. The technique 
has been applied to the diffusion of gases in microporous [Ruthven and Eic 1989, 
Ruthven and Xu 1993, Hufton and Ruthven 1993, Jiang and Eic 2003, Grande et al 2002], 
mesoporous [Cavalcante et al 2003, Thang et al 2003, Qiao and Bhatia 2005] and 
macroporous materials [Ruthven and Brandani 2000, Brandani 1996a,1996b, Silva and 
Rodrigues 1996, Silva et al 1999, Silva and Rodrigues 1996, Jiang and Eic 2003, Da Silva 
et al 1999, Grande et al 2002]. The method has been extended to include self-diffusion 
[Hufton et al 1994, Brandani and Ruthven 1996d, Brandani et al. 1995a, 1995b.], counter-
diffusion [Jiang and Eic 2003, Brandani, et al. 2000], equilibrium studies [Brandani et al. 
2003, Brandani and Ruthven 2003] and diffusion in liquids [Brandani and Ruthven 1995]. 
Diffusivities have been extracted from the short time solution [Brandani and Ruthven 
1996c, Hufton and Ruthven 1993, Han et al 1999], intermediate time solution [Hufton et 
al. (1994)], long time solution [Eic and Ruthven 1987, Hufton and Ruthven 1993, Han et 
al. 1999] and using the full time solution of the desorption curve. The primary emphasis 
has been on extracting the diffusivity and equilibrium constants using the slope and 
intercept of the long time region of the desorption curve [Brandani and Ruthven 1996c]. 
The method was originally developed for the linear equilibrium region [Eic. and 
Ruthven1988] but has been expanded to the nonlinear region [Brandani 1998a, 1998b]. 
Criteria have been developed for apparatus limitations [Karger and Ruthven 1992], purge 
gas flow rate [Brandani and Ruthven 1996d], equilibrium control [Ruthven and Brandani 

1996c], fluid phase holdup [Brandani and Ruthven 1996c, Brandani and Ruthven 1995], 
external mass transfer [Ruthven and Eic (1989)], surface resistance control [Brandani and 
Ruthven 1996e, Ruthven and Brandani 2005], equilibration time [Ruthven and Eic 
(1989)], particle size distribution [Duncan and Moeller 2002] and heat effects [Brandani 
et al (1998)]. 
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This manuscript is concerned with non-linear equilibrium effects in ZLC analysis. 
Brandani in 1998 examined this topic in detail for non-linear Langmuir desorption for 
microporous systems. His basic conclusion was that the long time analysis produced little 
error in determining the diffusivity results similar to the linear case but that larger errors 
could arise in the equilibrium constant determination. This analysis is extended to 
macroporous/mesoporous systems involving a heterogeneous adsorption isotherm. 

THEORETICAL MODEL 

The cell mass balance for a desorption experiment is given by  

( ) 01 =+− Fc
dt
qdVP ε   (1) 

where VP is the volume of the pellet, ε is the pellet voidage, q  is the average 
concentration inside the particles and c is the composition in the fluid phase. For the solid 
phase mass balance, assuming spherical particles with a constant pore diffusivity 
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where 

r
cDN P

P ∂
∂

−= ε  (3) 

where DP is the pore diffusivity. 
A general nonlinear isotherm equation is 

)(cfq =  (4) 
Since 
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the molar flux may be expressed in terms of the adsorbate loading as 
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Assuming for a gas that term tcP ∂∂ << tq ∂∂ , and incorporating Equation 6 for the flux 
expression, Equation 2 may be rewritten as 
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Also, from an overall mass balance on the solid the following relationship holds 
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To evaluate )(cf ′  the type of isotherms need to be selected. The isotherms selected are 
the Langmuir isotherm representing a homogeneous surface and the Toth isotherm 
representing a heterogeneous surface. The parameters of the isotherms are presented in 
Table 1. The following argument is derived based on the Toth isotherm; the Langmuir 
results may simply be found by setting n = 1 in the Toth formulation. 

Table 1 Isotherm Forms 
Type Name Isotherm )(cf ′  )(cf ′ Normalized 
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where the Henry constant K is defined in Table 1. 
Note that the effective diffusivity in this formulation is defined as 
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eff ε
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 (11) 

whereas for the linear adsorption case, the analogous equation is [ ] 
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DD P

eff εε
ε
−+

=
1

 (12) 

For high values of K, these two equations are intrinsically similar giving identical 
effective diffusivity values. Also Equation 10 for the parameter L can be written 
canceling the K values as follows 

PS DV
FRL
ε

2

3
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=  (13) 

This is quite easy to evaluate for a given flowrate F and DP for a mesoporous or 
macroporous sorbent. 
The normalized equations are 
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In the limit of infinite dilution ( )0=λ , the proposed model becomes linear and an 
analytical solution is available (Crank, 1975) 
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with the eigenvalues for the system given by 
01 =−+ LCot nn ββ  (19) 

This solution has a linear asymptote in the long time (LT) region 
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For the case of L small, L32
1 ≈β  and Equation 20 further reduces to 
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For the case of L large, [L 20≥ ], Equation 20 reduces to 
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providing a rapid means of estimating the intercept in the LT region. 
Following the argument of Brandani (1998), and Brandani and Ruthven (1997), the L 
parameter can be viewed as the ratio of two time constants or as the initial dimensionless 
flux at the surface of the solid at time zero. This is true also for the nonlinear case, since 
at time zero 1=C  and from Equation 17 
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Therefore when the L parameter is small the dimensionless concentration profile inside 
the particle is independent of position and essentially flat. Under these conditions the 
system is in the equilibrium control range, and the column mass balance may be  
rewritten as 
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For the Toth isotherm 
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Substituting into Equation 22 gives 
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For the long time region this expression may be reduced to a linear asymptote in a 
semilog plot  
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Table 2. Summary of 3Lτ Solutions 
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Table 3. Summary of ln C Long Time Solutions 
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The family of solutions for Equations 27 and 28 are presented in Tables 2 and 3 
respectively, and in particular for the cases n=1,2,3,4 and n. 
Both solutions for n = 1 in Tables 2 and 3 were earlier derived by Brandani (1998) for the 
Langmuir isotherm. As the Toth isotherm reduces to the Langmuir isotherm when n = 1, 
this is expected. However the case n = 1 is only one particular solution in the family of 
solutions. 
The reader is referred to the article by Brandani (1998) for an expanded discussion on 
these limiting forms of the equation. Succinctly, he proves that the limiting form for a 
microporous solid with nonlinear Langmuir equilibrium is the average involving 
Equations 17, 26 and an Equation for the limiting form of the tracer diffusivity. 
The interesting result is that the limiting form, Equation 26, for the nonlinear Langmuir 
Equation is applicable to microporous, mesoporous and macroporous materials, with the 
same slope of -3L in all three cases Further, the limiting slope at long time is identical for 
the Toth isotherm having a heterogeneity parameter of n = ½ for the mesoporous and 
macroporous materials. This suggests that the limiting slope is -3L for all values of n but 
this will need a simulation to establish. The only difference between the microporous and 
both the mesoporous and macroporous materials is that the diffusivity observed is Do the 
diffusivity at infinite dilution in the Darken expression in microporous materials and the 
effective diffusivity Deff at infinite dilution in mesoporous/macroporous materials, In fact 
the zero length column (ZLC) produces the zero loading diffusivity (ZLD) when 
measured in the long time region. 

MODELING RESULTS and APPLICATION TO DATA 
 
 This is presently being revised. Figures for different L’s must be included. 
Will be resubmitted within the next 10 days. 
 
 
 
 

CONCLUSIONS 
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b Equilibrium parameter, ccm./mol [Langmuir isotherm] 

b Toth parameter, [mol/ccm.]n 

cP pore gas phase concentration, mol/ccm 

c cell concentration, mol/ccm. 

co initial cell concentration, mol/ccm. 

C dimensionless gas concentration [=c/co] 

DP pore diffusion coefficient, cm2/s 

F Cell flowrate, ccm/s. 

K Henrys’ constant defined in Table 1. 

L dimensionless parameter defined in Eq. 10. 

N molar flux, mol/s. 

n Toth parameter 

q solid phase concentration, mol/ccm. 

q  average solid phase concentration, mol/ccm. 

qs saturated solid phase concentration, mol/ccm. 

qo initial solid phase concentration, mol/ccm. 

Q dimensionless solid phase concentration, defined in Eq. 9. 

r radial coordinate, cm. 

t time, s. 

VP pellet volume, ccm. 

 

Greek Letters 

ε pellet voidage 

λ nonlinearity parameter. 

τ dimensionless time, defined in Eq. 9. 

η dimensionless radial coordinate, defined in Eq. 9. 
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Figure 1. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0, L = 1] 
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Figure 2. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.1, L = 1] 
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Figure 3. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.25, L = 1] 
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Figure 4. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.25, L = 5] 
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Figure 4. Plot of Limiting Asymptotic Solutions for Eqts. 27 and 28 [λ = 0.25, L = 10] 
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Figure 4. Plot of Limiting Asymptotic Solutions for Eqts. 27 and 28 [λ = 0.25, L = 20] 
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Figure 5. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.5, L = 1]  
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Figure 6. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.5, L = 1]  
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Figure 7. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.5, L = 10]  
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Figure 8. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.5, L = 20]  
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Figure 9. Plot of Limiting Asymptotic Solutions for Equations 27 and 28 [λ = 0.75, L = 1] 
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Figure 10. Plot of Limiting Asymptotic Solutions for Eqts. 27 and 28 [λ = 0.75, L = 5] 
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Figure 10. Plot of Limiting Asymptotic Solutions for Eqts. 27 and 28 [λ = 0.75, L = 10] 
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Figure 10. Plot of Limiting Asymptotic Solutions for Eqts. 27 and 28 [λ = 0.75, L = 20] 
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Figure 7. Variation of Intercept C [Eq. 28] as a function of λ and n with calculated 

Regression Equations. 
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