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1. Introduction  
 
This paper presents an improved approach in the modelling of phase equilibria based on the 
global optimization of the free energy and phase stability analysis. In this method, genetic 
algorithms coupled with a local method of optimization, a general objective function with 
finite-difference gradient are used to calculate phase’s equilibrium. 
 
This method can be summarized in two stages:  
• Initially all global minima are searched by direct minimization of free Gibbs energy (G). 

The objective function is the sum of the absolute values of the first derivative of G. 
Afterwards the result is automatically integrated in the second subroutine of 
minimization to check the equality of chemicals potentials. This allows to locate the zone 
of all coexisting phases (maximum three in our case). In this latter zone, the mixture will 
be separated into three phases. Outside of this zone, one or two phases are present.  

• Next the tangent plane distance function (TPDF) is used to test system stability outside 
this zone. When the system is unstable, the minimization of (TPDF) gives good initial 
estimates for the second subroutine of minimization.  

 
The proposed model is capable to predict precisely the phase stability.  In the case of 
instability, the model gives the exact number of phases. Results on phase equilibrium 
problems show that this model is reliable to find minima in all the cases that have been 
tested. 
 
Later this model will be coupled with the Stefan-Maxwell model to describe the mass transfer 
process during the nanocapsule formation. 
 
2. Nanocapsules formation  
 
2.1. Nanocapsules 
 
Nanocapsules are synthetic colloidal systems ranging in size from 10 to 500nm, consisted of 
a core in which an active ingredient can built-in, and surrounded by a thin membrane of 
polymer (Fig 1) 
Nanocapsules have received considerable attention in recent years, in particular those 
prepared with biodegradable polymers, because of their potential use as site-specific drug 
delivery systems [1]. 
 
 
 
 
 
 

Figure 1 nanocapsule formation 



 

 
The formation of nanocapsule is called encapsulation. Encapsulation allows to enhance the 
drug stability by protecting the active agent from its environment and by reducing adverse or 
toxic effects. Another objective of these delivery systems is to control the further release of 
the drug. The main interest of these colloidal vectors is to enhance the therapeutic effect by 
targeting the active molecule to its site of action and by creating a high local concentration.  
 
2.2. Materials and method  
 
2.2.1. Materials  
 
The polymer used for the nanocapsules formation is poly-E-caprolactone PCL (Sigma 
Aldrich Chemica Company Inc., USA). Its average molecular weight (Mw) was given by the 
supplier as close to 80,000 D. 
The oil was labrafac lipophilic WL 1349, a mixture of triglycerides of fatty acids caprylic 
(C8 )/capric (C10) from gattefossé. The solvent is the pure ethyl acetate from Laurylab. 
The stabilizer is polyvinyl alcohol (Mowiols 40-88, 88% hydrolyzed, Mwca 127,000 D from 
Aldrich Chemical Company). 
Distilled water saturated with solvent is used as a non-solvent and distilled water as a diluent 
for the emulsion. 
 
2.2.2. Method  
 
The method proposed to prepare nanocapsules in this study is the emulsification–diffusion. 
The original of this technique is due to Quintanar-Guerrero [1996] [2]; this process involves 
the emulsification of a partially water-miscible solvent (previously saturated with water), 
containing the polymer and oil, in an aqueous phase (previously saturated with the solvent), 
containing a stabilizer. The subsequent addition of large volume of water to the system 
causes the solvent to diffuse into the external phase, causing the polymer’s deposition 
around the droplets, then the formation of nanocapsules (Fig 2). 
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Figure 2 Preparation of Nanocapsules by emulsion diffusion method 
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3. Model description 
 
The nanocapsule formation is controlled by two phenomena:  the phase separation and the 
mass transfer and, thus by the competing kinetics between those two phenomena. Indeed 
the dilution causes the diffusion of the solvent from the droplets towards the continuous 
phase and shifts the mixture composition inside the droplets. Thus we have the phases 
separation inside the droplets and the formation of the distinct nano-phases (polymer-rich 
phase, solvent rich phase and oil rich- phase) (Fig 3). At the same time the solvent 
concentration inside the droplet decreases because of the diffusion and the size of 
nanocapsule decreases.  
  
The following assumptions were made in the model: 
 

 There are two systems, the external one which represents the exterior of the 
nanocapsule {solvent + non-solvent} and the internal one {solvent-water + polymer + 
oil} 

 Only three components are inside the nanocapsule (solvent, polymer, oil). The 
solvent saturated with water has the same behaviour that the solvent alone. 

 Nanocapsules are represented by symmetrical spheres 
 Diffusion according to r (radius) 
 The energy of the mixture inside the nanocapsules is described by the Flory-Huggins 

thermodynamic model 
 All the components inside the volume dV are in equilibrium. 

 
 

     
 
Solvent Diffusion   Phase’s Separation  Formation of Nanocapsule 
 

Figure 3 : Phase separation during mass transfer processes 
 
In this paper, only the thermodynamic model which describes the process of phases 
separation into the nanocapsule is presented. 
 
3.1. Thermodynamic model  
 
The Gibbs free energy of mixing is given by the Flory–Huggins functional [3], thus for a 
ternary system we have: 
 
 
 
Where ni is the mole number of component i; Φi, the volume fraction of component i; R, the 
ideal gas constant; and T, the absolute temperature. The subscripts refer to nonsolvent (1), 
solvent (2), and polymer (3), respectively. 
χ13 is the nonsolvent-polymer interaction parameter, and χ23, the solvent-polymer interaction 
parameter and χ23 is the nonsolvent-solvent interaction parameter. 
 
We suppose that 
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Or  
 
Were xi is the mole fraction of species i, and ntot  is the number of moles of mixture.  
 
Then  
 
With 
 
Hence G can be written as a function of x1 and x2 only  
 
 
 
 
 
 
With 
 
 
The chemical potential µi of each component was calculated from the first derivative of the 
expression given by (Eq 4) with respect to composition. 
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3.1.1. Problem formulation 
 
The problem of locating the equilibrium compositions of a multi-component system at a 
temperature T and a pressure P can be formulated as a minimization problem as the true 
solution for mixtures corresponding to the global minimum Gibbs free energy. 
 
So there are three restrictions that all phase equilibrium solutions must satisfy [4] 
 

 The material balance must be preserved. 
 The chemical potentials for each component must be the same in all the phases. 
 The system of predicted phases at the equilibrium state must have the lowest 

possible Gibbs energy at the system temperature and pressure. 
 
This problem can be described mathematically as follows: 
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Were GM is the Gibbs free energy, µi

α the chemical potential of component i in the phase α, 
ni the number total of moles of the component i, ni

Φ the number total of moles of the 
component i in the phase Φ, П the number of the coexisting phases, C the number of the 
components, ntot the number total of moles, respectively. 
 
According to Eqs (11), П-1 equations are to be satisfied for each component i during the 
minimization the free energy of mixing G. So that means finding the tangent plane equations 
for the Gibbs energy function. 
 
3.1.2. The computation procedure  
 
3.1.2. 1.First stage  
 
At first all the stationary points are searched by direct minimization of the function g. In these 
points the partial derivatives of the g with respect to x1 and x2  (at constant temperature and 
pressure) become zero and the determinant of the matrix of the second-order partial 
derivatives of g with respect to the mole fraction at the same conditions should be positive 
definite: 
 
 
 

And  
 
 
 
 
To locate these points, an optimization technique based on the successive use of a genetic 
algorithm (GA) is used, this algorithm will be presented in next section. The objective 
function f1 in this case is the sum of the absolute values of the first derivative of g. 
 
 
 
This function would be positive or null; the minimum in this case is zero. 
 

So if f1 = 0 then 0
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g . Thus the system (14), can be satisfied by minimizing f1. 

In this case all the minima have the value equal to zero.  
 
Afterwards the determinant of the Hessian at the saddle points is calculated. If the Hessian is 
positive definite at these points, they are minima, so they are saved. Else if it is negative 
definite, they are rejected. 
 
To improve the reliability of locating all minima, this algorithm is repeated several times to 
allow exploring all search space.  
 
Next the final results are automatically integrated in the (LCONF) subroutine (this routine is 
available in the IMSL Library (visual numeric)) to check the chemical potentials equality. The 
objective function f2 to minimize in this case is: 
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Constraints: 

 
3.1.2. 2.Second stage  
 
In this step, a preliminary test of stability based on Gibbs’ tangent plane criterion established 
by Backer et al.(1981) and Michelson (1982a, b) is applied[5] [6] [7]. 
 
Let z be the overall composition (at a temperature T and a pressure P), a necessary and 
sufficient condition for an equilibrium postulated solution is that the tangent plane distance 
function, denoted by: 
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must be non negative for all possible phases in the system. The tangent plane distance 
function is defined as the distance between the Gibbs surface and the tangent plane 
associated with this surface at z. 
 
Where Nc is the number of the components, and µi represents the chemical potential of 
component i respectively. 
 
A common approach for determining if D(x) is negative for all x, is to minimize D(x) with the 
constraints  
     
 
The method suggested here for minimization is the genetic algorithm, the same code as in 
the first stage is used. 
 
So if D(x) is positive for all range of x, then the postulated solution corresponds to the global 
minimum of the Gibbs free energy and the system is stable with one phase. If not, it will be 
separated in two phases with lower Gibbs free energy. 
 
In this stage, the composition that minimizes D(x), corresponds to a first stationary point. 
Then this point is used to find the second stationary point. The barycentre z’ of the point z 
and the previously found stationary point is calculated. D’(x), the distance between the Gibbs 
surface and the tangent plane associated with this surface at z’ is minimized. The result here 
is the second stationary point of D(x).  
 
Finally the result is injected into the second subroutine to check the equality of chemicals 
potentials for each component into the two phases. 
 
The objective function here is:           
 
Constraints  
 
4. The global optimization method 
 
Genetic algorithms (GA) are a stochastic global optimization technique that simulates natural 
evolution on the solution space of the optimization problems. It originated from the studies of 
cellular automata, conducted by John Holland and his colleagues at the University of 
Michigan [8] [9]. 
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GA is typically implemented as a computer simulation in which a population of abstract 
representations (called chromosomes) of candidate solutions (called individuals) of an 
optimization problem evolves toward better solutions. Traditionally, solutions are 
represented in binary as strings of 0s and 1s, but different encodings are also possible. The 
evolution starts from a population of completely random individuals and happens in 
generations. In each generation, the fitness of the whole population is evaluated, multiple 
individuals are stochastically selected from the current population (based on their fitness), 
modified (mutated or recombined) to form a new population, which becomes current in the 
next iteration of the algorithm. 

 
• Genetic algorithm procedure 

 
The genetic algorithm procedure can be summarized as follows: 
 
 

                      
 
 
5. Application of the method 
 
To test this method, four examples of ternary mixture with one, two and tree phases in 
equilibrium are selected. Only one example is represented. 
 
For this example the energy of mixing is written as follows 
 
 
    

Evaluation

Initial 
Population 
(Random) 

Selection

Operators : 
- Crossover 
- Mutation 

end ?

results 

n=n+1 

yes 

No 
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 Where Χ12 = 2.814, Χ23 = 2.8 and Χ13 = 2.852 
 
The Gibbs free energy surface in this case is represented in figure 4 and its 
projection in figure 5 
 
 
 
    
          
 
 
 
         
 
 
 
 
 
 
 
 
 
Fig 4 and Fig 5 show that the Gibbs free energy function has three global minima and 
several local minima. The methodology described before is used here to calculate phases 
Equilibria.   
 
Initially the method described in paragraph 3.1.2.1is applied to determine the global minima. 
The results are summarized in table 1, they represent three phases in equilibrium. 
 
Table 1 global minima 
 Phase I Phase II Phase III 

x1 0.1414 0.7097 0.1182 
x2 0.1508 0.1255 0.7040 
x3 0.7078 0.1648 0.1778 

 
Previous results allow writing the equations that delimit the zone where the three 
phases coexists: 

 
 

 
 
Geometrically Z(x) represents a triangle where three phases coexists. Outside of this 
zone one or two phases are possible. 
 
Simulations results outside this zone are represented in table 2, method described in 
paragraph 3.1.2.21is used here. 
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Fig 5 Gibbs free energy surface projection 



 

 
 
Table 2 calculations oh phases Equilibria outside Z(x) 
 
Feed composition 
 

Stability News phases compositions 

X1=0.1 
X2=O.1 

stable X1=0.1 
X2=0.1 

X1=0.1 
X2=O.2 

unstable XI
1=0.087        XII

1=0.086   
XI

2=0.793        XII
2=0.108    

X1=0.3 
X2=O.1 

unstable XI
1=0.858        XII

1=0.085   
XI

2=0.042        XII
2=0.06    

X1=0.8 
X2=O.1 

stable X1=0.8 
X2=0.1 

X1=0.5 
X2=O.1 

unstable XI
1=0.107        XII

1=0.865   
XI

2=0.069        XII
2=0.052    

X1=0.1 
X2=O.5 

unstable XI
1=0.077        XII

1=0.053   
XI

2=0.116         XII
2=0.859    

X1=0.1 
X2=O.6 

unstable XI
1=0.056        XII

1=0.050   
XI

2=0.107         XII
2=0.861    

 
6. Conclusion and perspectives  
 
In this paper we advocate improved approach in the modelling of phases Equilibria.  
The developed method exploits two techniques of optimization: genetic algorithms and local 
method of optimization, a general objective function with finite-difference gradient. 
 
A method for locating the local minima based in the minimization of (TDPF) is presented. So 
the minimization of (TDPF) gives us the first stationary point. Then this point is used to find 
the second stationary point. The barycentre z’ of the point z which represents the feed 
composition and the previously found stationary point is calculated. D’(x), the distance 
between the Gibbs surface and the tangent plane associated with this surface at z’ is 
minimized. The result here is the second stationary point of D(x).  
 
This method proved to be capable to predict precisely the phase stability for ternary 
system.  
 
In addition, the future developments of the model will include mass transfer to 
describe the nanocapsule formation. 
 
Notations  
 
 
 
f   objective function 
G   Gibbs free energy 
Ni   mol number of component i in feed 
C   number of components 
R   universal gas constant 
T   temperature 
µi(x)   the chemical potential of component i at x, 



 

µi(z)   the chemical potential of component i at z, 
D(x)   the tangent plane distance function. 
xi   the mole fraction of species i 
χ13   the nonsolvent-polymer interaction parameter 
χ23   the solvent-polymer interaction parameter  
χ23   the nonsolvent-solvent interaction parameter     
µi
α   the chemical potential of component i in the phase α 

ni
Φ   the number total of moles of the component i in the phase Φ 

П   the number oh the phases coexists 
ntot   the number total of moles 
j  denote phases   
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