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Introduction 
 
 
 Diffusion is a process by which molecules in random motion about their mean 
position travel from a region of higher concentration to that of lower concentration.  The 
speed distribution of the molecules for an ideal gas can be given by the Maxwell 
distribution. Kinetic theory of gases has been used to predict the mass diffusivity for 
binary mixtures of non-polar gases.  The definition of molar flux of species A across 
any plane is found by counting the molecules of A that cross unit area of the plane in 
the positive y direction for a considered instant in time and subtracting the number that 
cross in the negative y direction.  Assuming a linear concentration profile this 
expression can be shown to reduce to the Fick’s first law [Fick, 1822] of diffusion [Bird, 
Stewart and Lightfoot, 1960].  In the same considered instant in time, the accumulation 
of molecules at the surface is neglected.  There are molecules that have pierced the 
surface that has moved less than a diameter of the molecule during the considered 
instant in time and is still in contact with the surface.  Accounting for the accumulation 
of molecules [Sharma, 2005] and retaining the linear concentration gradient the molar 
flux can be shown to reduce to a expression analogous to that given by Cattaneo 
[1958] and Vernotte [1958] for heat conduction 5 decades ago. The relaxation time and 
 ∂J/∂t can account for the accumulation effects.  When the accumulation of mass flux 
exceeds exponential time the wave diffusion regime will be pronounced compared with 
the Fick diffusion regime, Tzou [1997].    This regime can be a third mode of mass 
transfer in addition to the molecular diffusion and convection that has been discussed 
extensively in the literature.  
 
 
 
 
 



Theory 
 

The rate of permeation of a particular medicine in the human body is of interest in 
drug delivery systems.  The dissolution of the drug is often times governed by mass 
diffusion and relaxation. The time scales involved with these systems are short that the 
ballistic term may become significant.  The objective of drug delivery system design is 
to increase the amount of drug dissolved.  When a pill is taken,  after a said period of 
time the dissolution of pill will reach a steady state.   The time required to reach this 
steady supply of drug is of interest.  It is assumed that the dissolution of this pill is 
controlled by diffusion into the stagnant contents of the human anatomy.  The 
dissolution is diffusion controlled and the surroundings are stagnant.    

 A mass balance on the spherical shell around the pill can be written and when 
combined with the damped wave diffusion and relaxation equation can be written as; 

 
 
 τr∂

2C/∂t2  +  ∂C/∂t       =  D/r2 ∂/∂r(r2 ∂C/∂r)                            [1]  
   

 
Let u = (C – C0)/(Csat – C0);  ;  τ = t/τr; X = r/sqrt(Dτr)               [2]  

   
Eq. [1] becomes; 
 
  ∂2u/∂τ2  +  ∂u/∂τ       =  1/X2 ∂/∂X(X2 ∂u/∂X)         [3]   
 
The time and space conditions can be written as; 
 
   τ = 0,  u = 0                                          [4]  

                           
                           τ = ∞,  u = 1             [5]   
 
   τ > 0,  X= XR0,   u = 1           [6] 

   
   X = ∞,   u  = 0            [7] 

   
 
Consider the substitution, V = u/X.  Eq.[3]  becomes, 
 
   ∂2V/∂τ2     +  ∂V/∂τ          =         2V/X2 + 4/X∂V/∂X + ∂2V/∂X2         [8]   
 
The damping term can be removed by a u = wexp(-nτ) substitution. As shown in the 

preceding sections for n = ½,  Eq. [8] becomes. 
 
∂2W/∂τ2   - W/4          =    2W/X2 + 4/X∂W/∂X + ∂2W/∂X2          [9] 

   
 
Let η = τ2 – X2 



 
The term 2W/X2 can be neglected for large X. W is small for large r as u = Wexp(-

τ/2)/r.  As shown in the above section Eq. [9] for large X can be written as; 
 
Now, 4/X∂W/∂X = -8∂W/∂η       [10] 

      
4η∂2W/∂η2  + 12∂W/∂η                 - W/4   = 0                [11] 

      
Or  η2∂2W/∂η2  + 3η∂W/∂η          - ηW/16   = 0     [12] 

     
 

Comparing Eq. [12]] with the generalized Bessel equation   
   
a = 3; b = 0;  c = 0;  d = -1/16;  s = ½                                                             [13]                    
  
The order p of the solution is then p = 2 sqrt(1) = 2               
 
Or           W  =   c1I2(1/2 sqrt(τ2 – X2)/(τ2 – X2)  +  c2K2 1/2sqrt(τ2 – X2)/(τ2 – X2)   
 c2 can be seen to be zero as W is finite and not infinitely large at η = 0.  
 
V  = exp(-τ/2) c1I2(1/2 sqrt(τ2 – X2)/(τ2 – X2)              [14]                                
   
An approximate solution can be obtaining by eliminating c1 between the above equation 
and the equation from the boundary condition.  
 

  1/XR0 =  exp(-τ/2) c1I2(1/2sqrt(τ2 – XR0

2  )/(τ2 – XR0

2)    [15] 
   

Thus for τ >  X 
 
V  =  (1/XR0) [(τ

2 - XR0

2)/ (τ2 – X2)] [I2(1/2 sqrt(τ2 – X2)/ I21/2(sqrt(τ2 – XR0

2)   
 
  For X  > τ, 
 

u  =  (X/XR0) [(τ
2 - XR0

2)/ (X2 - τ2)] J2(1/2 sqrt(X2 - τ2) / I21/2sqrt(τ2 – XR0

2)     
                                                                                                    [16] 
           

On examining the model solution it can be seen that the  Bessel function of the 
second order and first kind will go to zero at some value of η. The first root of the 
Bessel function occurs when 

 
                   ½(X2  - τ2 )1/2 = 5.1356              [17]   
 
                Or    X2  - τ2  = 105.498                 

   
 



 When an exterior point in the infinite sphere is considered  a  lag time can be 
calculated prior to which there is no mass transfer to that point. After the lag time there 
exists two regimes. One is described by Eq. [3.335] and the third regime is described 
by Eq. [3.334].  Thus, 

  
 τlag  = sqrt( Xp

2  - 105.498)        
              

 

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 10 20 30 40
Dimensionless Time

C
on

ce
nt

ra
ti

on
 (C

 - 
C

o)
/(C

s 
- C

o)
Xp = 11 (tou > X)"  X > tou"

 
                 Three Regimes of Dimensionless Concentration  
                       at a Exterior Point from a Pill   

 
In the dissolving pill problem consider all three dimensions of the spherical coordinates. 
Use the V = u/r substitution if necessary. Discuss the spatiotemporal concentration in 
the infinite sphere. 
  
 The governing equation for the concentration when the mass balance equation 
and the constitutive damped wave diffusion and relaxation equation are combined and 
written after modification of the equation given in Cussler [1997]  in three dimensions is 
as follows; 

                  Let u = (C – C0)/(Cs – C0);  X = r/sqrt(Dτr);  τ  = t/τr;     
 
Then the governing equation in three dimensions in spherical coordinates can be 

written as; 
 
∂2u/∂τ2  + ∂u/∂τ   =  2/X∂u/∂X  +  ∂2u/∂X2 +  1/X2∂2u/∂θ2  + 1/X2Sin2θ ∂2u/∂φ2 + 

Cotθ/X2∂u/∂θ              [18]  
        

            
Consider the substitution, V = u/X.  Eq. [18] becomes, 
 
 ∂2V/∂τ2  +  ∂V/∂τ       =  2V/X2 + 4/X∂V/∂X + ∂2V/∂X2  + 1/X2∂2V/∂θ2  + 1/X2Sin2θ  



                                      ∂2V/∂φ2  + Cotθ/X2∂V/∂θ          [19] 
       

∂2V/∂τ2  +  ∂V/∂τ          =    2V/X2 + 4/X∂V/∂X + 1/X∂2V/∂X2 + 1/X2∂2V/∂θ2  + 1/X2Sin2θ    
                                             ∂2V/∂φ2  + Cotθ/X2 ∂V/∂θ                                  [20] 

         
The damping term can be removed by a V = wexp(-nτ) substitution. As shown in the 

preceding sections for n = ½,  Eq. [3.352] becomes. 
 
∂2W/∂τ2   - W/4          =          2W/X2 + 4/X∂W/∂X + ∂2W/∂X2 + 1/X2∂2W/∂θ2  + 1/ X2Sin2θ         
                                                 ∂2W/∂φ2     + Cotθ/X2∂W/∂θ       [21]     
 For small θ, 
 
∂2W/∂τ2  - W/4   =  2W/X2 + 4/X∂W/∂X + ∂2W/∂X2 + 1/X2∂2W/∂θ2  + 1/X2Sin2θ ∂2W/∂φ2

 + 1/θX2 ∂W/∂θ            
 
    Let ξ  =  θX,   Then 1/X2∂2W/∂θ2   =  ∂2W/∂ξ2     
 
           ψ  =  φXSinθ, Then,  1/X2Sin2θ ∂2W/∂φ2 =    ∂2W/∂ψ2    
 
Eq. [21] then becomes for large X,  
 
∂2W/∂τ2  - W/4   =  4/X∂W/∂X  +  ∂2W/∂X2 +  ∂2W/∂ξ2  + ∂2W/∂ψ2 + 1/ξ∂W/∂ξ    
                                                                                                                     [22] 
Consider the transformation,  η  =  τ2 – X2 - ξ2 - ψ2     
 
As shown in the analysis in Worked Example 3.10 the derivatives in Eq. [] in 4 

variables become converted into 1 variable,  
  
(∂2 w/∂η2 )4( τ2  - X2 - ξ2 - ψ2)   + 18(∂ w/∂η )   -w/4  = 0          [23]       

    
or η2(∂2 w/∂η2 ) )   + 9/2η(∂ w/∂η )   -wη/16  = 0                

 
 Comparing Eq. [3.359] with the generalized Bessel equation   
 
                       a = 9/2; b = 0;  c = 0;  d = -1/16;  s = ½                  [24]                 
   
 
The order p of the solution is then p = 7/2                 
 
W  =   c1I7/2(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/(τ2 – X2  - ξ2 - ψ2)  +  c2I-7/2 sqrt(τ2 – X2 - ξ2 - ψ2)/(τ2 –X2 
- ξ2 - ψ2)   
  
        u  =  Xexp(-τ/2) c1I7/2(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/(τ2 – X2  - ξ2 - ψ2)       [25]  
 
c2 can be seen to be zero as W is finite and not infinitely large at η = 0. An approximate 
solution can be obtaining by eliminating c1 between the above equation and the 



equation from the boundary condition.   The equation from the boundary condition can 
be written as; 
 
1   = XR0 exp(-τ/2) c1I7/2(1/2 sqrt(τ2 –  XR0

2)/ (τ2 – XR0

2) [26] 
    
 
Dividing Eq. [25] by Eq. [26], 
 
 u =   (X/XR0) [(τ

2 – XR0

2)/(τ2 – X2  - ξ2 - ψ2)]I7/2(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/I7/2(1/2sqrt(τ2 –  XR0

2) 
             
For small X, 
 
u  = (X/XR0) [(τ

2 – XR0

2)/(X2  + ξ2 +  ψ2 - τ2] J7/2(1/2 sqrt(X2 + ξ2 + ψ2 - τ2)/I7/2(1/2sqrt(τ2 –XR0

2)
           [27] 
             
 

In the creeping mass transfer limit  Eq. [27] can be approximated as; 
 
 ∂2W/∂τ2  - W/4   =  4/X∂W/∂X  +  ∂2W/∂X2 +  ∂2W/∂ξ2  + ∂2W/∂ψ2   [28]   
 
After the transformation the PDE with 4 variables is converted to a Bessel equation in 

1 variable: 
 
(∂2 w/∂η2 )4( τ2  - X2 - ξ2 - ψ2)   + 16(∂ w/∂η )   -w/4  = 0        [29]      

    
 
 or (∂2 w/∂η2 )η2   + 4η(∂ w/∂η )  -ηw/16  = 0              [30] 

    
 

The order of the Bessel solution for Eq. [30] can be calculated by comparing Eq. [30] 
with the generalized Bessel equation given in Eq. [A.30] and the solution is;   
a = 4; b = 0;  c = 0;  d = -1/16;  s = ½ .   The order p of the solution is then p = 3 
                
 
W  =   c1I3(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/(τ2 – X2  - ξ2 - ψ2)  +  c2K3 sqrt(τ2 – X2 - ξ2 - ψ2)/(τ2 – X2 - 
ξ2 - ψ2) 
  
Or           u  =  Xexp(-τ/2) c1I3(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/(τ2 – X2  - ξ2 - ψ2)   [31]   
 
c2 can be seen to be zero as W is finite and not infinitely large at η = 0. An approximate 
solution can be obtaining by eliminating c1 between the above equation and the 
equation from the boundary condition.   The equation from the boundary condition can 
be written as; 
 1   = XR0 exp(-τ/2) c1I3(1/2 sqrt(τ2 –  XR0

2)/ (τ2 – XR0

2)     
 
Dividing Eq. [31] by Eq. [30], 



 
u   =   (X/XR0) [(τ

2 – XR0

2)/(τ2 – X2  - ξ2 - ψ2)] I3(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/I3(1/2sqrt(τ2 –      

               XR0

2)           [32] 
          
For small X, 
 
u   =   (X/XR0) [(τ

2 – XR0

2)/(X2  + ξ2 + ψ2 - τ2] J3(1/2 sqrt(X2 + ξ2 + ψ2 - τ2)/I3(1/2sqrt(τ2 –  XR0

2)
           [33] 
             
In the limit of zero radius of the dissolving pill, 
 
u       =   (X/XR0) [τ

2/(τ2 – X2  - ξ2 - ψ2)] I3(1/2 sqrt(τ2 – X2 - ξ2 - ψ2)/I3(τ/2)   
 
For small X, 
 
u       =   (X/XR0) [(τ

2)/( X2  + ξ2 + ψ2 - τ2] J3(1/2 sqrt(X2 + ξ2 + ψ2 - τ2)/I3(τ/2)  [34]      
 
 The solution is in terms of a Bessel composite function of the third order and first 
kind for small X and a modified Bessel composite function of the third order and first 
kind for times greater than X.    The first root of the Bessel function of the third order 
was calculated by using 17 terms of the series expansion of the Bessel function in a 
Pentium IV microprocessor using a Microsoft Spreadsheet upto 4 decimal places. The 
root was found to be 6.3802. 
 

   ½(X2 + ξ2 + ψ2  - τ2 )1/2 = 6.3802                
 
                      Or    X2  + ξ2 + ψ2  - τ2  = 162.828    [35]           

     
 
When an exterior point in the infinite sphere is considered  a  lag time can be 

calculated prior to which there is no mass transfer to that point. After the lag time there 
exists two regimes. One is described by Eq. [33] and the third regime is described by 
Eq. [34].  Thus, 

 
  τlag  = sqrt( Xp

2 + ξp

2 + ψp

2   - 162.828)    [36] 
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