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Abstract  

 
The financial implications of using distributed versus centralized advanced water 

treatment technologies to address certain stringent water quality criteria are examined. 
Specifically, we estimate for a model water quality parameter the relative financial burdens 
required to address advanced water treatment requirements using centralized and distributed 
treatment approaches. The analytical approach applied can be generalized to optimize 
technology selection for any specific water quality parameter(s) of interest in a given water, 
e.g. desalination or water processing for re-use application. 

 
The specific application of the model discussed here posits a water quality degradation 

inherent to the distribution network. This is a broad application of the model in that such 
degradation can be modeled either as “sharp” (e.g. immediate degradation upon discharge to 
the distribution network), or   “progressive” (e.g. the leaching of pipe materials or formation of 
disinfection by-products (DBPs) in its spatial and temporal character. A relatively 
straightforward application of the model to desalination applications would be a scenario of 
“partial” centralized desalination combined with point of use/point of entry desalination for 
consumer use. The processing of grey water for reuse purposes usually requires treatment of 
relatively high dissolved organic carbon water, and requires considerable disinfectant residuals  
to ensure public safety. This paper thus addresses DBP formation within distribution systems 
as a water quality issue. In the paper we estimate disinfection by-product (DBP) formation 
within a distribution network, and then use this cost estimate to calculate “break-even” costs for 
alternative use of distributed water treatment technologies to meet DBP exposure limits . A 
basic linear DBP formation model is employed and hydraulic residence time distribution is 
calculated using EPA water distribution system survey data.  

 
For an estimated maximum water age of approximately 21 days, and network DBP 

precursor concentrations ranging from 1 to 5 mg/L, our model indicated that the centralized 
treatment approach would need to reduce DPB precursors to approximately 0.076 mg/L. The 
optimum selection of technology improvements needed to provide this level of reduction were 
estimated for various system sizes and feed water quality levels, with optimal technology 
selection being found to vary as a function of  economies of scale. 

 
The break-even cost associated with equivalent efficiency distributed treatment 

systems was calculated by dividing the estimated cost of required central treatment facility 
upgrades by the number of residential connections receiving water having DBP concentrations 
in excess of regulatory limits. For our sample utility, we found a maximum estimated break-



even single connection cost of $US 25,000 dollars for systems serving between 101 to 500 
people, and a minimum break-even single connection cost of $US 5,000 dollars for systems 
serving more than 500,000 people.  
I. INTRODUCTION 

This paper presents a financial analysis of the implementation of distributed 
technology systems to provide advanced treatment of water for direct human consumption. 
The degradation of water quality within a distribution network, a phenomenon that presents 
considerable financial and technical obstacles to the delivery of secure water supplies to end-
point consumers, is one of several problematic issues that might well be addressed by 
distributed systems. The approach described can be readily adapted to the scenario of partial 
centralized treatment, followed by optimized selection and placement of advanced treatment 
technologies to meet specific more stringent consumer water quality needs. The analysis 
described here invokes a systems-level consideration of potable water treatment to support a 
distributed implementation of advanced technologies to reach water treatment and re-use 
goals. 

The advantages of distributed optimal technology network (DOT-Net) systems as a 
means for providing superior water treatment for potable use and potential energy recovery 
have previously been enumerated and detailed [Weber, 2002; 2004]. The principal economic 
driver supporting implementation of such systems are the costs associated with upgrading 
large centralized treatment facilities and distribution networks to provide water of a quality that 
consistently meets increasingly stringent drinking water standards. The prime focus of the 
research described here is a comparison of such costs to those associated with 
implementation of  the DOT-Net model for advanced drinking water treatment under various 
scenarios and technical conditions for different system sizes and populations.  

While disinfection by-products (DBPs) comprise the specific water quality parameter 
selected for articulation of the comparative analysis, the general methodology described is 
applicable to most other water quality measures as well. The approach applies to any scenario 
where water quality degradation corresponds to water age at point of consumption, or where 
partial processing of water exists due to financial limitations. Indeed, the approach is 
applicable in general to any scenario in which existing water quality is insufficient and 
advanced treatment processes must be selected and located in the most cost-effective 
manner. 

Detailed financial and engineering analyses of centralized and distributed treatment 
approaches for DBP reduction for various selected water infrastructure configurations are 
presented. Each water infrastructure configuration constitutes a combination of system 
treatment technology, system service population, and water source 
II. DISINFECTION BY-PRODUCT (DBP) FORMATION MODEL 

A basic linear DBP formation model was employed for the study. The model, used to 
determine required levels of water treatment necessary to reduce DBP precursor materials, is 
considerably more simple than many other DBP models available (for example, see [Sohn et 
al., 2004]) but was selected because of its ready applicability to general design and operation 
cost estimations. 



2.1. Linear formation model 

The removal of DBP precursor material (preDBP) due to advanced treatment 
processes at a water treatment plant was assumed to follow a multiplicative product model of 
the form 

 [ ]system conventional ipreDBP preDBP X⎡ ⎤ = ×⎣ ⎦ ∏  (1.) 

where preDBPsystem is the preDBP concentration after all treatment processes have 
occurred, preDBPconventional is the preDBP concentration in the treated water after conventional 
treatment processes, and Xi is the additional treatment fraction of preDBP removed by 
advanced process i. The formation of DBP within the distribution network was assumed to 
follow a basic linear model 

 [ ] system
DBP kt preDBP= ⎡ ⎤⎣ ⎦  (2.) 

where DBP is the lumped aggregate concentration of disinfection by-products at the 
point of consumption. For the purposes of this model, total trihalomethane (TTHM) was used 
as a representative and quantitative measure of DBP. The phenomenological rate coefficient k 
reflects the influence of such system variables as pH and temperature, while the residence 
time t is a function of distribution system time. Eqs. 1 and 2 combine to form 

 [ ] [ ]conventional iDBP kt preDBP X= ×∏  (3.) 

DBP formation within the distribution system can thus be reduced by changing system 
parameters such as pH that are reflected in the reaction rate coefficient, by lowering preDBP 
concentrations from conventional treatment processes, or by adding additional treatment 
processes for preDBP removal at the central water treatment plant. 

2.2. Formation rate coefficient 

For purposes of this study, a representative TTHM formation rate coefficient of 50 
µg/mg (TTHM/TOC)/day was used and was assumed constant throughout the distribution 
system.  

Hypothesized “typical” distribution network Modeled ideal distribution network 
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Figure 1. Distribution network model 



2.3. DBP exposure limits 

The US EPA in 1998 established a total trihalomethane (TTHM) exposure limit of 80 
µg/L and a haloacetic acid exposure limit of 60 µg/L. For this study, the 80 µg/L TTHM limit 
was applied as a binding constraint on the maximum TTHM pipeline concentration. This 
constraint was applied during the optimal selection of additional treatment technologies. 
2.4. Residence time distribution 

The residence time distribution model employed in this analysis was developed by first 
idealizing flow patterns within a hypothetical distribution network for a water utility having one 
centrally located treatment facility. These flow patterns were then idealized as sheet flow 
treated water discharges from the central treatment location flowing radially outward until 
consumed by users, as shown in Figure 1. 

The residence time distribution was derived with the following assumptions: 
1. a single centralized potable water treatment facility; 
2. the city can be modeled as a circularly-distributed set of demands;  
3. the only inter-network storage volume is capacity within the distribution system 

pipeline, (i.e. no holding tanks or standpipes exist); 
4. the distribution system pipe decreases in volume linearly with distance from the 

centralized treatment facility; 
5. adequate mixing occurs within the distribution system so that discrete pipes can be 

modeled as a smooth surface; and, 
6. demand locations are small enough that they may be modeled as a uniformly 

smooth surface. 
 
The increase in residence time through any particular segment of distribution pipe 

follows the equation 

 
s

s s

Vdt
D Q

=
+  (4.) 

where sV is the storage volume of the segment, sD is the demand at that segment, and 

sQ is the remaining demand past that segment. The storage volume sV at segment s varies as 
a function of distance from the treatment utility and represents the pipe volume per unit area as 
follows 

 ( ) ( ) [ ]max min min
max

* 1 * 2s
s s

rvolumeV area V V V r dr
area r

π
⎡ ⎤⎛ ⎞⎛ ⎞= = − − +⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (5.) 

where maxV is the maximum storage volume per area associated with the pipes 
adjacent to the treatment facility, minV in the minimum storage volume per area associated with 
the pipes adjacent to the edge of the distribution network, sr is the distance from segment s to 
the treatment facility, maxr is the radius of the entire distribution network, and dr is the length 
between connections. Note the difference in units between the Vs and the Vmax and Vmin 
values. 



The demand at segment s can be modeled as 

 ( )2s s c sD P q r drπ=  (6.) 

where Ps is the population density at segment s, and qc is the demand per capita. The 
remaining demand past segment s is 

 ( )2 2
maxs s s cQ r r P qπ= −  (7.) 

Substituting Eq. 5 through 7 into Eq. 4 yields 
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Eq. 8 was solved numerically by letting (dr = ∆r) where ∆r was set to 0.042 miles, a 
typical length between connections. The values for maxV and minV were found by using EPA 
distribution network data concerning pipeline length and size, and US census data to 
determine average population density Ps for urban settings [Census, 2005; EPA 2002]. For the 
purpose of this study, an average 
population density of 5,000 people per 
square mile was used. Average storage 
coefficients ranged from 0.5 million 
gallons/square mile for the largest cities 
greater than 500,000 people, to about 2.5 
million gallons/square mile for cities with a 
population less than 50,000, as shown in 
Figure 2. The average length between 
connections was found by dividing the total 
length of pipeline within the distribution 
network by the number of connections 
within the network. Per capita demand was 
determined using EPA water system 
survey data [EPA, 2002]. An example 
residence time distribution for a hypothetical 
city is shown in Figure 3. Figure 3 shows 
the hydraulic residence time calculation for 
a hypothetical city three miles in radius, with 
a population density of 5,000 people per 
square mile, an average connection water 
demand of 165 gal per day, an average 
network storage capacity of 1.75 million 
gallons per square mile over the entire 
distribution network, and the ratio of 
maximum to minimum network storage 
capacity varying as shown. The hydraulic 
detention time at the perimeter ranges from 
under nine days to over twenty days. This Figure 3. Peripheral storage value sensitivity analysis

Figure 2. Network storage capacity vs. system size 
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data indicates that there is fairly limited sensitivity to hydraulic residence time due to variation 
in network storage capacity from the center of the network to the periphery of the network for 
higher ratios of maximum to minimum network storage capacity. For purposes of this study, a 
21-day periphery residence time was used. 
III. WATER TREATMENT UNIT PROCESSES FOR DBP PRECURSOR REMOVAL 

Representative water treatment processes were selected to represent a baseline 
treatment of TTHM formation potential. Additional treatment technologies were selected to 
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Figure 4. Treatment practices for primarily surface water plants 
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Figure 5. Treatment practices for primarily ground water plants 



Table 1. Selection of representative existing treatment 
technologies 

represent advanced water treatment based on superior removal of TTHM formation potential. 
The following two sections describe the methods used to select these technologies and to 
estimate suitable treatment and cost parameters. 
3.1. Typical conventional potable water treatment processes 

The primary water treatment processes used for potable water treatment were 
selected using the US EPA Community Water System Survey: 2000 [EPA, 2002]. The principal 
treatment practices for surface water plants and ground water plants for various system sizes 
are displayed in Figure 4 and Figure 5. The smallest surface water utilities, those serving less 
than 500 people, primarily use chlorination as their only treatment, as shown in Figure 4. 
Between 60 to 95 percent of the surface water utilities serving populations larger than 1,000 
people use coagulation and flocculation in their central treatment plants, and between 60 and 
80 percent of this same population use settling and/or sedimentation. Between 45 to 75 
percent of the surface water utilities serving more than 1,000 people have dual or multi-media 
filtration, while 7 to 33 percent use rapid sand filtration. Less than 10 percent of those utilities 
serving more than 1,000 people use direct filtration within their treatment plants. 

By comparison, survey data of water utilities using primarily ground water sources 
reveal very different treatment technology use patterns, as illustrated in Figure 5. More than 65 
percent of all ground water utilities use chlorination as their only treatment method, and few 
technology types are used by more than 10 percent of the treatment plants. Most comment 
treatment practices for ground water utilities are lime/soda ash softening processes, used by 
approximately 10 percent of the utilities serving between 500 and 500,000 people, and either 
direct filtration, rapid sand filtration, or dual/multi-media filtration, generally used by 2 to 5 
percent of utilities. The largest ground water utilities, those serving populations greater than 
500,000, generally use the fewest treatment types of any utility type or size, with only 0.4 
percent using lime/soda ash softening 
processes and only 2.5 percent using 
any type of filtration (in this case, 
duel/multi-media filtration). 

For this study, several 
representative water utility types were 
selected for economic analysis. These 
utility types were representative of the 
most likely technology selections for 
recycled water utilities respectively, as 
shown in Table 1. Two types of surface 
water treatment processes and one 
ground water treatment process are 
represented. Each treatment type had an estimated treated water TTHM precursor 
concentration associated with it, as shown. 
3.2. Potential advanced treatment process upgrades and additions  

Five main technologies were selected as potential technologies to treat TTHM 
precursors to levels that would meet TTHM exposure limits. These technologies are enhanced 
coagulation, reverse osmosis, granular activated carbon, lime/soda ash softening, and 
nanofiltration. Each technology treatment effectiveness, along with the capital cost and 

Initial 
water 
source 

Centralized treatment 
processes 

TTHM precursor 
concentration 
(in treated water) 

Surface 
Coagulation/Flocculation, 
Settling/Sedimentation, 
Duel/Multi-media Filtration 

3 mg/L 

Surface Coagulation/Flocculation,  
Direct Filtration 5 mg/L 

Ground Lime/Soda Ash Softening 1 mg/L 



Table 2. Treatment efficiency and cost coefficients for advanced technologies 

operations and maintenance cost scaling coefficients, is displayed in Table 2. The TTHM 
precursor treatment effectiveness for various unit processes was obtained through a literature 
review. These data are characteristic data used for the purposes of this study and are not 
meant to be representative of the applicable treatment effectiveness under all environmental 
and process conditions. The capital, operations and maintenance costs were developed using 
surveys data obtained from comprehensive EPA cost studies. Capital cost data was obtained 
from the 2001 EPA Drinking Water Infrastructure Needs Survey [EPA, 2001].  

The capital costs of enhanced coagulation were assumed to be a combination of the 
separate capital costs of the rehabilitation of the sedimentation/flocculation process, the 
construction of new mechanical waste handling and treatment equipment, and the 
rehabilitation of a conventional filter plant to handle the increased solids load. 
IV. ANALYSIS AND RESULTS 

4.1. Hydraulic detention time 

The hydraulic detention time was modeled using an approach which assumed that a 
water utility distribution network could be modeled as a smoothly distributed circular system. 
Our hydraulic detention time model used five inputs to estimate the hydraulic detention time at 
any point in the distribution network. These inputs are network radius, population density, 
demand per capita, central network storage volume, and periphery network storage volume. In 
order to demonstrate the sensitivity of the model, the maximum hydraulic detention time was 
calculated for a simple case, as shown in Figure 6. The basis population density was assumed 
to be 5,000 people per square mile for a total estimated population of approximately 141,400. 
The per capita daily water demand was assumed to be 165 gallons per person. The central 
network storage volume was assumed to be 1.75 million gallons per square mile and the ratio 
of central to periphery network storage coefficient was kept at 10. The segment length was 
approximately 210 ft. (0.042 miles), while the service area was maintained at a constant six 
miles across.  

Capital cost scaling 
coefficients 

Operations and 
maintenance cost 

scaling coefficients Technology 
TTHM 

precursor 
removal, 
percent Linear 

coefficient 
Exponential 
Coefficient 

Linear 
coefficient 

Exponential 
Coefficient 

References 

Enhanced 
coagulation 55 

178,079, 
684,895, 
768,107 

0.56, 
0.494, 
0.606 

156,793 1.00 
(Holmes and Oemcke, 
2002; EPA, 2001; St. 

Johns, 1997)  

Reverse 
osmosis (RO) 95 2,330,526 0.814 753,876 0.712 

(EPA, 2001; Survey, 
1997; Escobar et al, 

2000) 

Granular 
activated carbon 

(GAC) 
51 485,010 0.832 206,253 0.5294 

(Holmes and Oemcke, 
2002; EPA, 2001; 

Background, 1999) 

Lime/Soda Ash 
softening 31 2,592,446 0.884 305,895 0.7628 

(EPA, 2001; Liao and 
Randtke, 1986;  

Kissimmee, 2000) 

Nanofiltration 90 485,010 0.832 940,156 0.5068 
(EPA, 2001;  

Background, 1999;  
Schafer et al., 2004; 
Frimmel et al., 2004) 



 Figure 6. Sensitivity of HDT to input variables 

Figure 6 shows a sensitivity 
analysis of water age for each input 
variable. Each variable was varied through 
a range from 90 to 110 percent of the base 
value. Population density and demand per 
capita were found to have an identical 
impact on water age because both values 
are used to calculate system withdraws 
and an increase in either one causes an 
identical increase in the unit system 
demand. As a result, they were combined 
into a single variable called demand per 
area, which calculated to be 825,000 
gal./mile2. As the demand per area was 
increased, the water age decreased 
approximately linearly at almost the same rate of change. For instance, after the demand per 
area was increased by ten percent, the water age decreased by approximately 9.1 percent. As 
the network storage volume increased, the water age increased approximately linearly at the 
same rate of increase, so that a ten percent increase in average network storage coefficient 
resulted in a ten percent increase in water age. Finally, we found when the ratio of ratio of 
central to periphery network storage coefficient was increased, the water age increased, but at 
a much slower rate. After the ratio of central to periphery network storage coefficient was 
increased by ten percent, the hydraulic detention time increased approximately 1.4 percent.  

The extreme hydraulic detention time was calculated as a function of total population 
of the water utility service area (data not shown) using the system data averages from the EPA 
Community System Survey [EPA, 2002]. For all variations in service population, the 95th 
percentile water age was found to be quite similar, e.g. in the example data for Fig. 6 above, 
the 95th percentile water age was nearly 11 days. The extreme water age varied from the 
greatest value of about 24 days for the smallest networks, those serving a pollution of less 
than 100 people, to close to 20 days for the largest networks, those serving more than 500,000 
people. The reason for the variation in extreme hydraulic detention time is that the model is 
actually modeling a discrete system withdraw with discrete segment length between 
connections. The average segment length between connections does not decrease below a 
finite value, approximately 564 feet for systems serving between 3,300 to 10,000 people to 66 
feet for the largest systems serving greater than 500,000 people. As a result, the last few 
segments at the periphery of the distribution system add a non-proportionally large amount to 
the hydraulic detention time. The smaller the system, the larger the overall fraction of time 
added at the periphery, and so the larger the effect of the last segment. This effect impacts the 
hydraulic detention time of just the last few percentile of the service population. The hydraulic 
detention time as a function of cumulative population of the service area is the same for all 
service populations until the last one or two percent of the service population. Note that 
different service populations might have variations in relative difference in network storage 
values between the center and periphery, similar to the variations in average network storage 
value, shown in Figure 2, for different water utility sizes. 
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Figure 7. Optimized technology 
l ti t

4.2. TTHM formation 

By combining the TTHP formation potential model with the hydraulic detention time 
model, we were able to estimate the TTHM concentration at any point within the distribution 
network. For each system classification type (see Table 1) we assumed an average DOC 
treated water concentration as shown. At a TTHM formation rate of 50 ug/mg TTHM/DOC per 
day, our DBP formation model indicated that TTHM will be formed in excess of the EPA TTHM 
exposure limits in the drinking water between 0.32 to 1.6 days, depending on initial TTHM 
precursor concentration. In order to meet DBP exposure requirements for the entire 
population, the each plant will need to decrease DOC to achieve 0.075 mg/L in the final treated 
water. No single advanced treatment process has been shown to reliably achieve this removal 
efficiency on a sustained basis, so a combination of treatment technologies will be required. 
4.3. Centralized optimal unit process selection 

Each advanced treatment technology was analyzed using both capital and operations 
and maintenance (COM) costs, as well as DOC removal effectiveness, using the data shown 
in Table 2. The technologies were analyzed for their ability to meet the TTHM requirements 
and selected based on minimum costs. The present worth of operations and maintenance 
costs were calculated by using a 20 year design life and 7 percent interest. The optimal 
technology was selected for water utilities of different sizes using an integer linear optimization 
method which minimized present worth cost of the selected technologies while holding the 
required percent DOC removal treatment requirement as a binding constraint.  

Figure 7 shows the minimum present worth cost of the technology improvements 
necessary to meet the EPA TTHM exposure requirements for various existing TTHM precursor 
concentrations. The minimum cost of the optimum technology increases quite rapidly for the 
smaller water utilities, but then increases less rapidly for the largest water utilities, as expected 
for systems exhibiting economies of scale. The data in Fig. 7 are presented on a log-log scale, 
and exhibit high correlation coefficients (R2 > 0.99) between cost and capacity despite being 
the combination of several different technologies.  

For water utilities with 1 mg/L TTHM precursors (requiring treatment to achieve a 
92.5% reduction) reverse osmosis was the optimal technology selection for all plant sizes. For 
utilities with 3 mg/L TTHM precursors (requiring treatment to achieve a 97.5% reduction) a 
combination of reverse osmosis and enhanced coagulation was the optimal technology 
selection for utilities treating up to 11 MGD, 
while reverse osmosis and granular 
activated carbon was the optimal 
technology selection for utilities treating 
more than 11 MGD. For systems with 5 
mg/L TTHM precursors (requiring treatment 
to achieve a 98.5% reduction) a 
combination of reverse osmosis, enhanced 
coagulation, and granular activated carbon 
was the optimal technology selection for 
utilities treating up to 11 MGD, while 
reverse osmosis and nanofiltration was the 
optimal technology selection for utilities 
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Figure 8. Distributed system unit costs 

treating more than 11 MGD. 
4.4.  Distributed treatment systems – unit costs 

The break-even COM costs of distributed treatment systems was calculated by 
dividing the estimated cost of the required central treatment facility upgrades by the number of 
residential connections receiving water with DBP concentrations in excess of regulatory limits. 
This calculation was based on the required number of connections receiving water which 
needed additional treatment. For example, if fewer connections receive water requiring 
advanced treatment then the centralized cost will be divided among fewer connections and 
break-even cost will increase. The break-even cost represents the maximum expense (in 
present value cost including capital, operations and maintenance costs) that can be spent for 
each distributed unit and still cost less than or equal to the cost of the centralized treatment 
system upgrade. 

Only residential connections are considered in each scenario. Non-residential 
demands such as industrial or commercial uses are assumed to receive water treated only by 
the central treatment facility. The break-even cost per 10 connections, is shown in Figure 8, 
with system size plotted on a log scale. The break-even cost of treating ten connections, 
instead of single point-of-entry (POE) connections, was chosen as a more realistic 
implementation of distributed treatment units. The variation in the plots across varying system 
size is due to using real data on number of residential connections for different system 
populations, as reported by EPA system survey results [EPA, 2002]. 

The cost trends in Figure 8 reveal a decreasing break-even cost for each unit as total 
water utility service population increases in size. These estimates describe the outlay available 
to purchase and install, operate, and maintain each distributed unit for a 20 year period with 
seven percent interest. There are two factors influencing the money available for each 
distributed unit, the scale efficiency of the centralized treatment system upgrades and the 
relative fraction of residential connections present within various system sizes. The scale 
efficiency of the centralized treatment system upgrades tends to reduce the money available 
per distributed unit because as the water utility size increases, the upgrades cost less per unit 
volume resulting in less money per treatment unit. On the other hand, as system size 
increases, the relative fraction of residential connections decreases, so there are fewer 
connections that need distributed 
treatment systems. The combination of 
these two influences tends to be a 
moderately downward trend of the per 
unit cost as water utility size increases.  

Note the interesting lack of 
correlation between TTHM precursor 
concentration and break-even unit costs, 
and the general closeness of the 
distributed unit costs despite the 
variation in initial water quality. Although 
the highest TTHM precursor 
concentration had the highest break-
even unit cost for most of the systems 
sizes, it did not have the highest break-
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even unit cost for the largest system size examined. Instead, the maximum cost switched to 
the system with the 3 mg/L TTHM precursor concentration. In addition, there is cross over of 
greatest unit cost between the 1 mg/L TTHM precursor concentration and 3 mg/L TTHM 
precursor concentration for smaller service populations. The reason these break-even costs 
switch back and forth is that they track so closely, and the reason that they track so closely is 
that there is a balance between the cost of treating a more concentrated flow of TTHM 
precursor concentration and the formation time it takes for the DBP to exceed regulatory limits. 
The higher the TTHM precursor concentration the quicker the network DBP concentration 
exceeds regulatory levels, and thus the higher the fraction of impacted connections within the 
distribution network. As a result, although a higher TTHM precursor concentration resulted in a 
larger centralized treatment cost, this centralized cost is divided among more connections and 
as such the per unit break-even cost remained fairly constant despite variations in pre-
treatment water quality. 
V. DISCUSSION 

The work described in this  paper combines a TTHM formation model with a network 
hydraulic detention time model to estimate costs required for water utility treatment upgrades 
needed to meet  EPA specified TTHM exposure limits. The hydraulic detention time of water in 
the periphery of a typical water utility distribution system was found to be quite high, the 95th 
percentile being about 11 days, while the extreme case typically ranged from about 19 to 24 
days, depending on the system size and characteristics. Based on our model, more than half 
of a typical water utility service population receives water containing TTHM concentrations in 
excess of EPA regulatory limits. Because of the long detention time, for an average system the 
treated water TTHM precursor concentration must be reduced to approximately 0.076 mg/L. 

The centralized treatment requirements needed to address varying concentrations of 
TTHM precursors within a range of water utility sizes were then assessed using an optimal 
selection of advanced technologies. The optimal selection of technologies for each water utility 
size was determined using the treatment requirement as a binding constraint, and optimizing 
their selection for any particular system size to obtain minimum costs. The present worth of the 
estimated capital, operations, and maintenance costs was calculated using a 20-year design 
life and a 7 percent interest. We found that the costs of the optimum technology selection can 
be accurately estimated using a log-log linear model with treatment capacity as the variable 
input, with a residual (r-squared value) of 0.999, even though optimal costs were arrived at via 
different combinations of  technologies over the range of treatment plant sizes investigated. 

Finally, for each water utility size, we divided the cost of the estimated central system 
treatment upgrades by the impacted residential connections to determine the break-even cost 
of distributed treatment units. Break-even costs for a unit designed to treat 10 connections 
ranged from $US 260,000 to $US 45,000, with the greatest costs associated with the smallest 
utilities. We found two primary factors which tend to influence break-even costs: economies of 
scale and proportion of residential connections. Larger water utilities have an economically 
advantageous economies of scale and can provide treatment at cheaper per unit volume costs 
than smaller treatment systems. This influence tends towards a reduction in the break-even 
point as system size increases. However, larger water utilities also have a smaller fraction of 
residential connections and a larger fraction of non-residential connections; fewer residential 
connections results in more money available per connection. This influence tends towards an 
increase in the break-even point as system size increases. The combination of these two 
influences determines the overall break-even unit cost. For the smallest water utilities, where 



break-even cost is highest, economies of scale dominates and so break-even cost reduces 
quickly as system size increases. As water utility size increases, the influence of economies of 
scale starts to become moderated by the reducing proportion of residential connections, 
causing the break-even point to reduce at an increasingly slower rate. Eventually, for a water 
utility service population of about 80,000 people, these two forces nearly balance and further 
increases in utility size result in fairly small reduction in break-even point.  

Finally, we found very little difference in break-even costs for varying initial TTHM 
precursor concentration. Instead we found a fairly close balance between the cost of treating a 
more concentrated flow of TTHM precursor concentration and the number of residential 
connections impacted by excess DBP concentrations. The higher the TTHM precursor 
concentration the quicker the network DBP concentration exceeds regulatory levels, and thus 
the higher the fraction of impacted connections within the distribution network. As a result, 
although a higher TTHM precursor concentration resulted in a larger centralized treatment 
cost, this centralized cost is divided among more connections and so the per unit break-even 
cost remained fairly constant despite variation in pre-treatment water quality. 

The water quality parameters and related details used in this paper reflect an optimal 
selection of treatment processes to address a particular model application scenario in which 
water quality degradation occur primarily within the distribution network. It is important to 
recognize however that the approach employed is applicable to any scenario in which existing 
water quality is insufficient and advanced treatment processes must be selected and located in 
the most cost-effective manner.  
VI. REFERENCES 

Background information on treatment methods and distribution systems, 1999. In: 
Nitrate and Nebraska’s small community and rural domestic water supplies: an assessment of 
problems, needs and alternatives. U.S. Bureau of Reclamation, September, 1999. 

EPA, 2001. Drinking Water Infrastructure Needs Survey. US EPA, Office of Water, 
EPA 816-R-01-004. 

EPA, 2002. Community Water System Survey: 2000. US EPA, Office of Water, EPA 
815-R-02-005A. 

Escobar, I. C.; Hong, S.; and Randall, A, 2000. Removal of assimilable organic carbon 
and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration 
membranes. Journal of Membrane Science. 175(1), 1-17. 

Frimmel, F.H.; Saravia, F.; Gorenflo, A., 2004. NOM removal from different raw waters 
by membrane filtration. Water Science and Technology: Water Supply. 4(4), 165-174. 

Holmes, M. and Oemcke, D, 2002. Optimisation of conventional water treatment 
processes in Adelaide, South Australia. Water Science and Technology. 2(5-6), 157-163. 

Kissimmee Basin Water Supply Plan: Support Document, 2000. South Florida Water 
Management District, April 2000. 

Liao, M. and Randtke, S, 1986. Predicting the removal of soluble organic contaminants 
by lime softening. Water Research. 20(1), 27-35. 

Norton, Jr., John, W., and Weber, Jr., Walter, J., 2005 (forthcoming). Closed-form 
solution to water age in municipal distribution systems. Journal of Hydraulic Engineering. 



Schafer, A. I.; Pihlajamaki, A.; Fane, A. G.; Waite, T.D.; and Nystrom, M., 2004. 
Natural organic matter removal by nanofiltration: Effects of solution chemistry on retention of 
low molar mass acids versus bulk organic matter. Journal of Membrane Science. 242(1-2), 73-
85. 

Sohn, J., Amy, G., Cho, J., Lee, Y., and Yoon, Y., 2004. Disinfectant decay and 
disinfection by-products formation model development: chlorination and ozonation by-products. 
Water Research. 38, 2461–2478. 

St. Johns River Water Management District, 1997, Updated with a Projected 2005 
Construction Cost Index, In: DRAFT: Consolidated Water Supply Plan: Support Document. 
South Florida Water Management District, June 2004. 

Survey of US Costs and Water Rates for Desalination and Membrane Softening 
Plants, 1997.  Water Treatment Technology Program Report No. 24, Water Treatment 
Engineering and Research Group, Technical Service Center, Bureau of Reclamation, United 
States Department of the Interior. 

U.S. Census Bureau, 2005. American Housing Survey, www.census.gov. 
Weber, Jr., Walter, J., 2002. Distributed Optimal Technology Networks: A Concept and 

Strategy for Potable Water Sustainability. Water Science and Technology. 46 (6-7), 241-246. 
Weber, Jr., Walter, J., 2004. Optimal Uses of Advanced Technologies for Water and 

Wastewater Treatment in Urban Environments. Water Science and Technology: Water Supply. 
4 (1), 7-12. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



