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Abstract. In this study we investigate the use of Direct Quadrature Method of Moments for 
simulating turbulent mixing and chemical reaction in a partially stirred reactor (PaSR). A 
partially stirred reactor is characterized by perfect macromixing but imperfect micromixing. 
PaSRs are the building blocks of zone models for industrial scale chemical reactors, but they 
can also be considered to be a single computational grid in a more detailed CFD simulation 
such as the LES-FMDF. We consider a two stream mixing problem of a hydrocarbon fuel and 
air with an Arrhenius type chemical reaction rate that is commonly used for combustion 
processes. We consider a single step, a two step competitive-consecutive, and a more 
detailed chemical reaction mechanism. For the mixing, we use a common turbulent mixing 
model called the Interaction by Exchange with Mean (IEM). We then compare the solutions 
obtained using DQMOM with solutions obtained using Monte Carlo simulations. Due to the 
exponential dependence of the chemical reaction rate, the equations for the moments are 
unclosed and there is some error in the DQMOM solutions. Further, as the dimension of the 
pdf increases (for example by considering more complicated reaction mechanisms involving 
larger number of species), moment methods become less efficient and difficult to solve. 
However for simplified chemical schemes and in use with CFD models, DQMOM appears to 
be a very promising tool. The objective of the comparison of the Monte Carlo and DQMOM 
solutions is to investigate the tradeoffs inherent in both methods and attempt to provide 
guidelines as to when one method may be preferred over another.  
Keywords: Partially Stirred Reactor, Turbulent Mixing, Chemical Reactions, Combustion, Direct 
Quadrature Method of Moments, Monte Carlo Simulations. 
 
 The prediction of mixing and chemical reactions in the presence of a turbulent flow field 
is of great importance in the chemical process industries and has been the subject of intense 
research. In a turbulent flow chemical reactor there are fluctuations in the flow field and the 
chemical species concentrations over a very wide range of scales. A computational simulation 
of an industrial scale chemical reactor that resolves the fluctuations of the velocity field and 
chemical species down to the smallest time and length scales is intractable with the currently 
available software and hardware. While more detailed simulations of the flow field have 
become possible due to advances in the techniques of computational fluid dynamics (an 
example is the method of Large Eddy Simulation (LES)), the extension of these methods to the 
simulation of reacting scalars within a turbulent flow field is not straightforward. A basic 
premise of methods like the LES is that only the larger energy containing velocity fluctuations 
need to be resolved while the smallest scales in a turbulent flow are universal and can be 
described by known statistics. However, the mixing of scalars and hence the chemical 
reactions take place in the molecular scales and these processes are certainly not universal, 
i.e. they depend on the details of how the reactants are fed into the vessel, the rate of stirring 
and the large scale flow field as well as the smaller scale velocity fluctuations that enhance 
mixing. 
 

In the past, chemical reactors were studied in two limiting cases: fast reactions and fast 
mixing. For fast reactions, a mixture fraction approach is used to describe mixing and the 



conversion of reactants to products is assumed to be instantaneous. For chemical reactions 
that are slow compared to all the other flow-related processes, the details of the flow field are 
relatively unimportant and the flow in the reactor can be characterized as plug flow or as 
continuously stirred. The only effect of the flow field on chemical reactions is through the 
residence time (see for instance textbooks such as Hill (1977)). In between there is a large 
class of problems in which both the mixing and the chemical reactions have to be accounted 
for. An example is the extinction and reignition phenomena in combustion processes. The 
complex nature of these problems can be appreciated when one observes that chemical 
reactions proceed through a large number of intermediate steps involving a large number of 
chemical species. Further, scalar dispersion is caused by turbulent velocity fluctuations, and 
ultimately the mixing is governed by molecular processes. Since it is infeasible to resolve 
molecular scale processes in a computational simulation of the flow process, stochastic 
methods are used for describing molecular mixing and reaction. In computational terminology, 
these processes are referred to as “subgrid-scale” processes meaning that these processes 
occur in length and time scales smaller than computational grid resolution and therefore it is 
only possible to obtain statistical information on how these processes evolve. Stochastic 
methods involve the solution of a pdf transport equation. The pdf usually carries information 
about species concentrations and temperatures and evolves in a higher dimensional space. 
Hence its solution requires alternative methods like Monte Carlo simulations or moment 
methods. A detailed account of the pdf transport method for turbulent reacting flows is given in 
Pope (1985). Needless to say the computational requirements for a using a statistical method 
such as Monte Carlo with some grid based simulation is very large. As an example, in a 
simulation of a jet diffusion flame, Branley and Jones (2001) used 624,100 computational cells. 
To represent the subgrid scale processes using Monte Carlo simulations, around 20-100 
particles are required in each grid cell to adequately represent a pdf. Then differential 
equations need to be solved for each of the particles.  

 
Before going into details it is helpful to consider the bigger picture of the problem. When 

simulating a stochastic process describing mixing and chemical reaction, we are essentially 
tracking all the possible outcomes of the process and probabilities associated with each 
outcome. The information required to describe a mixing and reacting system at each instant 
can be represented by a data matrix as shown in figure 1. This matrix consists of m rows of 
samples that represent all the possible states of the system. The samples are also referred to 
as particles. The n columns of the matrix define the information carried by each particle. 
Graphically they are a swarm of m points in n-dimensional space. The total number of columns 
gives the dimension of the system which is the number of independent quantities required to 
describe the system. Chemical reactions are notoriously high dimensional systems. For 
instance a detailed mechanism for the oxidation of methane involves around 40 species and 
200 reactions. In this case the data matrix consists of 40 columns. Major research in the 
simplification of chemical kinetics involves reducing n, the dimension of the system. Chemical 
mechanism reduction schemes such as the ILDM (Maas and Pope (1992)) are techniques 
used for dimension reduction. The number of rows, m, are the number of samples required to 
accurately represent the underlying pdf. For a deterministic system such as a laminar 
combustion problem only a single sample is needed. In a turbulent combustion problem where 
there are fluctuations in species properties caused by fluctuations in the flow field, a large 
number of samples are required to obtain good statistics. For chemical reactions the particles 
do not interact but the proportions of the various species (i.e. the entries in the columns for a 
particular row) change continuously. In combustion applications one usually has to solve a stiff  



 
Table 1. Schematic representation of a data matrix describing a reacting system.  
 Dimensions (eg. species mass fractions) 

Samples Y1 Y2 …………… Yn-1 Yn 
N1      
N2      
      

Nm-1      
Nm      

 
non-linear ordinary differential equation (ODE) to obtain the trajectory of each particle in the 
high dimensional space. This operation involves the greatest computational cost of a reacting 
flow simulation. Hence, for a fixed dimension, any technique that provides a systematic 
method of reducing the number of particles leads to significant savings in computation. Along 
with the reactions, molecular mixing also takes place. For particle systems the mixing needs to 
be modeled. Several mixing models have been proposed in the literature. The most 
straightforward is the Interaction by Exchange with the Mean (IEM) method in which the 
particles move deterministically toward the mean. Stochastic mixing models that involve 
interactions between particles have also been proposed. A more detailed mixing model that 
uses the concept of a minimum spanning tree also exists. The EMST model proposed by 
Subramaniam and Pope (1998) describes mixing due to interactions between “similar 
particles”, particles that are close in the n-dimensional space. In analogy to “dimension 
reduction”, “statistical reduction” is also possible, where the number of samples/particles m is 
reduced. In a sense, the ISAT technique invented by Pope (1997) can be considered to be a 
statistical reduction method in which samples that are close in composition space are grouped 
into clusters. As will be shown later moment methods are methods in which the sample size is 
reduced drastically. These methods provide the greatest statistical reduction possible. For 
instance, in the Direct Quadrature Method of Moments (DQMOM) technique (Fox (2003)), 
usually two or three quadrature points are used which in our example above is equivalent to 
using two or three particles. 
 
 In the rest of the paper we investigate the use of Direct Quadrature Method of Moments 
to simulate turbulent mixing and chemical reaction problems. To isolate the problem, mixing 
and chemical reaction in a partially stirred reactor (PaSR) model is considered. A PaSR is a 
reactor that is characterized by perfect macromixing (i.e. no spatial gradients of the scalars) 
but imperfect micromixing (i.e. mixing is not complete at the molecular scale). A PaSR can be 
considered to be a single computational grid in a more detailed CFD simulation. It can also be 
considered as an element of zone models for industrial scale chemical reactors. We intend to 
illustrate both the application of DQMOM and to evaluate its accuracy. For this reason, we 
consider a 1-step, 2-step, and detailed combustion reaction mechanisms involving 19 chemical 
species. These cases cover low dimensional as well as high dimensional cases described 
above. While for low dimensional systems, DQMOM gives excellent performance in terms of 
speed and accuracy for a number of problems (see for instance Marchisio and Fox (2003)), the 
evaluation of its performance in higher dimensions has not been investigated. 
 
 

Dimension 
Reduction Statistical 

Reduction 



1. DQMOM model for a partially stirred reactor. 
 

Let us consider an adiabatic, isobaric chemical reactor with two inlet streams. One stream 
carries the fuel and the other air. An outlet stream removes the products. Mixing and chemical 
reactions occur inside the reactor. The pdf describing the system is the joint scalar pdf 

( ) ),....,,( 21 dff φφφψ =  where each kφ is the mass fraction of the kth species or the temperature. 
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This equation is obtained by integrating the joint scalar pdf transport equation (Pope (1985)) 
assuming statistical homogeneity. As per Ren and Pope (2004), the residence time 
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expectation and needs to be modeled. In this study we use the IEM model with a mixing time 
scale given by mixτ  (Dopazo (1975)). 
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The inlet streams carry pure fuel (mass fraction 0
fuφ  and temperature 0

Tφ ) and pure air (mass 

fraction 0
oxφ  and temperature 0

Tφ )  given by : 
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The initial condition is pure air inside the reactor. 
)(~)0(~ Oftf ==            1.4 

  
 DQMOM is a presumed pdf method that works by forcing a number of moments of the 
pdf to evolve correctly. The details can be found in Fox (2003). In the DQMOM formulation the 
underlying pdf )(~ ψf  is represented by a series of delta functions. 
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where )(tWn  is the quadrature weight, nk ,φ̂  is the kth coordinate of the nth quadrature point. QN  
is the total number of quadrature points, and d  is the dimension of the space. By substituting 
the presumed form (1.5) into equation (1.1) and using the methods detailed in Fox (2003), we 
get equations for the evolution of the weights )(tWn  and the weighted quadrature points 
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The )1( +dNQ  source terms na  and nkb ,  are obtained by forcing )1( +dNQ  moments of the pdf 
to evolve correctly. This essentially involves solving a matrix equation of the form βα =A  
where A  is an )1( +dNQ  X )1( +dNQ  matrix for which each row is of the form     
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and there are )1( +dNQ  rows given by )1( +dNQ  d-tuples ( )dmm ,...,1 . This choice of A  ensures 
that )1( +dNQ  moments 

dmmM ,...,1
 moments evolve consistently. The vector α  contains the 

source terms ),...,1;,...,1;;,...,1;( , dkNnbNna QnkQn ===  and β  consists of terms due to mixing, 
reactions, inlets and outlet. Each of the )1( +dNQ  rows of β  determined by the d-tuple { }αm  is 
given by 
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Therefore the solution of the problem involves solving the ODEs (1.6) with the source terms for 
each time step given by solution of a matrix equation. 
 
 In terms of “statistical reduction” that we mentioned in the previous section, DQMOM is 
analogous to a Monte Carlo method with QN  particles. For very small QN , this would seem to 
be a great reduction in computational cost. However at each time step, a matrix of size 

)1( +dNQ  X )1( +dNQ  needs to be inverted. Matrix inversion is a computationally expensive 
procedure and this method loses its efficiency if QN  or d  are very large. DQMOM only ensures 
that some of the moments of the pdf evolve consistently. If the moment equations involve 
unclosed terms, one might need a larger value for QN  to accurately represent the unclosed 
terms. In combustion problems, the chemical source term involves an exponential dependence 
in temperature, which is one of the internal variables, and this term cannot be closed with a 
finite number of moments. In this case there is some error in the DQMOM solutions. Another 
issue is the rank deficiency of the matrix A . It turns out that for a given choice of QN  and d , it 
is not possible to evolve some sets of )1( +dNQ  moments due to the singularity of the matrix 



(Fox (2003)). The simplest example is for the case where 2== dNQ , in which it is not 
possible to evolve the most natural choice of moments 

21 ,mmM  with (m1,m2)= 
(0,0),(1,0),(0,1),(1,1),(2,0),(0,2). In the formulation above, we made no mention of which 
moments to choose. The choice of moments can be arbitrary and further there may not be an 
optimal choice of moments (Upadhyay and Ezekoye (2005)). Hence to impose some order in 
the choice of moments and at the same time to discard the moments that give rise to a 
singular matrix, we propose the method of Selective Graded Lexicographic Ordering (SGLO). 
 
 The graded lexicographic order is an ordering scheme for multivariate polynomials. In 
our context we want to order multivariate moments of the form 

dmmmM ,...,, 21
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graded lexicographic order (glex) is as follows (e.g. Dunkl and Xu (2001)). Let 
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*mm >  or if *mm =  then the first non zero entry in the difference *mm −  is positive. This 
type of ordering ensures that the 0th order moment is tracked before all the 1st order moments. 
And all 1st order moments are tracked before the 2nd order moments (which provide 
information on pair correlations) and so on. However a strict ordering using this scheme is not 
possible because some moments cause the resulting matrix to be singular. Hence a selective 
ordering is necessary. In practice a set of d-tuples, ordered according to glex, is generated; 
then, as the matrix A is built up row by row, a singular value decomposition of the matrix is 
performed. If the condition number of the matrix becomes very large then the current row 
associated with a particular d-tuple is discarded and the next d-tuple in the order is chosen. 
This procedure, which we have called Selective Graded Lexicographic Ordering (SGLO), 
ensures that the matrix A in (1.7) is non-singular. As an example let us take the case 

3,2 == dNQ  which is the case of the 2-step mechanism with two quadrature points. The set of 
eight valid moments is given by 

321 ,, mmmM  with =),,( 321 mmm (0,0,0), 
(1,0,0),(0,1,0),(0,0,1),(2,0,0),(1,1,0),(3,0,0). Note that it is not possible to track a few of the 
second order moments such as (0,1,1), (1,0,1), (0,0,2) etc. If some of the moments carry 
essential information for a particular application then they can be selected and the remaining 
moments can be ordered using SGLO. The ordering we have discussed is not the only 
possible ordering. The optimal choice of moments may depend on the problem and may 
require trial and error to discover. 
   
2. Chemical reaction models. 
 
 To investigate the performance of DQMOM for low and high dimensional systems we 
consider chemical reaction mechanisms of increasing complexity. The chemical reaction 
model is required to evaluate the chemical source terms )(ψiS appearing in equation 1.6. 
 
2.1. One step chemistry mechanism. 
 
 This is the simplest possible mechanism. We use the global 1-step reaction for propane 
combustion from Westbrook and Dryer (1981). 

2222283 8.180438.185 NHCONOHC ++→++         2.1 



 In this case d=2 (bivariate problem). One can solve for
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2.2. Two step chemical mechanism.  
 

We use the 2-step mechanism for propane taken from Westbrook and Dryer (1981).  

22
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In this case 3=d , i.e. only three variables are sufficient for describing the chemical 
system. For instance one can choose 2321 ,,

83
COCOHC === φφφφ , then the mass fractions of 

the remaining species and temperature can be obtained from these variables by linear 
transformations. The reaction rates for the two reaction steps are given by 

Step 1. [ ] [ ] ⎟
⎠
⎞

⎜
⎝
⎛ −=
RT
EOFAWR aba

F
1

11 exp  

Step 2. [ ] [ ] [ ] [ ]{ } ⎟
⎠
⎞

⎜
⎝
⎛ −

−=
RT
E

COAOOHCOAWR af
b

edc
fCO

2
222222 exp  

Where [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

F

F

W
F

ρφ  denotes the molar concentration of fuel etc. 

1.0=a , 65.1=b , 0.1=c , 5.0=d , 25.0=e , 0.1=f . Activation energies for the various reactions 
are molkcalEa /0.301 = , molkcalEa /0.402 = . Pre-exponential factors are 

8
2

6.14
2

12
1 105,10,100.1 ×==×= bf AAA .  

Then the chemical source terms for the variables 1φ , 2φ  and 3φ  are 
ρ
1

1
RS −

= , 

ρ
21

2
RRS −

=   and 
ρ
2

3
2 R

W
W

S
CO

CO

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= .  

 
2.3. More Detailed Reaction mechanisms. 
 
 We also consider two more detailed mechanisms for the combustion of methane. The 
first is J-Y Chen’s reduced 12 step mechanism (from the GRI 2.11 mechanism). This 
mechanism provides reaction rates for 16 species. The dimension is 16 when one includes the 
temperature and with the constraint of the mass fractions of species summing to one. The 
second is the ARM2 mechanism which is also based on GRI 2.11. This mechanism provides 



reaction rates for 19 species, so that d=19. These mechanisms can be found in the TNF 
website maintained by Sandia (http://www.ca.sandia.gov/TNF/chemistry.html).  
 
3. Computation and Results. 
 
 We present the comparison of solutions obtained by Monte Carlo simulations and 
DQMOM for the Partially Stirred Reactor Model. For the DQMOM computations, equations 
(1.6) are integrated using an explicit scheme with step size ),min(1.0 mixrest ττ×=Δ . The 
chemical source term is integrated using a much smaller time step. For the 1-step and 2-step 
mechanisms, a higher order adaptive Runge-Kutta method (Press et al. (1992)) is used. For 
the 12 step and ARM2 mechanism, an explicit scheme is used with tΔ as small as 10-7. The 
Monte Carlo simulations are performed using the method given in Ren and Pope (2004) with 
the exception that ISAT is not used for evaluating the chemical source term. 
 
 Figure 1 shows the plot of the mean and variance of the mixture fraction with time. The 
mixture fraction does not depend on the reaction scheme used but describes the mixing of the 
inlet streams of fuel and oxidizer and the air initially present in the reactor. For the pure mixing 
problem, there are no errors due to moment closure and therefore the means and variances 
predicted by DQMOM is also the exact solution. Also shown is the Monte Carlo Solution which 
shows some fluctuations about even for 100,000 particles. In figure 2 we plot the means and 
variances of carbon dioxide (the product) computed using DQMOM with two quadrature points 
and Monte Carlo simulations.  In this case there is a slight difference in the means in the final 
stationary state as well as during the evolution. There is a larger error in prediction of the 
variance with the variance predicted using Monte Carlo simulations being almost five times 
larger.  This indicates that although the mean is predicted accurately, there can be significant 
error in the variance.  
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Figure 1. Mean and variance of mixture 
fraction computed using 2pt. DQMOM and  
Monte Carlo simulations for the 1step 
mechanism. 
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   Figure 2. Mean and variance of carbon 
dioxide mass fraction computed using 2pt. 
DQMOM and Monte Carlo simulations for 
the 1-step mechanism 

 
Figure 3 shows the mean mass fractions of the different species for the two step 

reaction mechanism. The profiles are computed using 2 point DQMOM. In figure 4 we plot the 
variances of the species mass fractions. Both figure 1 and 2 correspond to the case of 



equivalence ratio 1=Φ  and 1.0;1 == mixres ττ . Initially the carbon monoxide concentration 
peaks due to the first reaction and as the temperature increases the second reaction converts 
CO into CO2.  
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Figure 3. Mean of species mass fractions 
computed using 2 point DQMOM for the 2 
step reaction mechanism. 
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Figure 4. Variance of species mass 
fractions computed using 2 point DQMOM 
for the 2 step reaction mechanism. 

 Figure 5 shows the mean species profiles for the ARM2 mechanism computed using 2-
point DQMOM. The simulations are run for a constant temperature of 1500K, equivalence ratio 

1=Φ  and 1.0;1 == mixres ττ .  This is a very high dimensional case but the computations indicate 
that it may be possible to apply DQMOM without getting into problems due to the ill-
conditioning of the matrices. Comparison of these results with Monte Carlo simulations 
remains a future task. 
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Figure 5. The means of some major and 
trace species computed using the 2-point 

DQMOM method for the ARM2 mechanism. 
The temperature is kept fixed at 1500K. 
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Figure 6. Variances of the major species 
and some significant trace species 
computed using 2-point DQMOM method 
for the ARM2 mechanism. The temperature 
is kept fixed at 1500K. 

4. Conclusions. 
 
 In this work we have implemented the Direct Quadrature Method of Moments for 
turbulent mixing and combustion problems. We find that DQMOM can be used for multivariate 
problems of high dimension provided that moments are chosen such that the matrices involved 
in the computation are not ill-conditioned or singular. Stochastic simulations in spaces of high 
dimension are important in a number of fields of chemical engineering. These simulations can 
be very demanding in terms of computational cost. The use of moment methods such as 
DQMOM can provide a simplification in the computations. In combustion simulations, there is a 
great reduction in the number of times the chemical source term needs to be evaluated. For 
DQMOM, the chemical source term needs to be evaluated only for the quadrature points or 
“environments”. Also a minimum of two or three quadrature points can be used for each 
dimension. As the ODEs describing chemical reactions are very stiff, the evaluation of the 
chemical source term constitutes the greatest computational cost for a turbulent reactive flow 
simulation using Monte Carlo methods. Hence in this aspect DQMOM offers some 
advantages. Of course, high-dimensional problems require significant computational cost even 
when simplified moment methods are used. For problems with high dimensions, such as the 
19 dimensional problem considered in this study, the number of moments that need to be 
tracked goes up. In a CFD simulation of turbulent flow, one has to solve a larger number of 
partial differential equations. There is also the cost of inverting a matrix of size )1( +dNQ  which 
becomes prohibitively expensive as QN  or d  goes up. Use of efficient but approximate 
methods of matrix inversion along with parallelization of the code can further speed up the 
process. In the future, the comparison of solutions obtained using DQMOM with Monte Carlo 
simulations, determination of optimal choices of moments and evaluation of the error incurred 
in moment closure schemes needs to be carried out.      
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