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Abstract

The class of stochastic nonlinear programming (SNLP) problems is important in optimization due
to the presence of nonlinearity and uncertainty in many applications including those in the field
of process systems engineering. But despite the apparent importance of such problems, solu-
tion algorithms for these problems have found few applications due to severe computational and
structural restrictions. To that effect, this work proposes a new algorithm for computationally ef-
ficient solution of the SNLP problems. Starting with the basic structure of traditional L-shaped
method, the new algorithm called L-shaped BONUS incorporates reweighting scheme to ease
computational load in the second stage recourse function calculation. The reweighting idea has
been previously used successfully in optimization in BONUS, also an algorithm to solve SNLP
problems. The proposed algorithm is analyzed using different case study problems including a
blending problem relevant to process industry and a large scale novel sensor placement problem
for water security networks. All problem results show considerable savings in computational time
without compromising accuracy, the performance being better for Hammersley sequence sampling
technique as compared to Monte Carlo sampling technique.

1 Introduction

Stochastic nonlinear programming (SNLP) problems represent an important class of op-
timization problems due to their omnipresence in real life situations. Many systems in nature are
inherently nonlinear, necessitating nonlinear models for their representation and consequently non-
linear programming methods for optimization. Another important factor for consideration is uncer-
tainty. Very rarely are the system details accurately known. Quite often the parameters and variables
are known only in terms of their range or, in some cases, in terms of their probability distributions. In
such cases, stochastic programming methods need to be resorted to for optimization.

The field of process systems engineering is also replete with applications of stochastic pro-
gramming, many of which are nonlinear. Numerous well known tasks in this field, such as project
planning and scheduling, chemical synthesis, process design and optimization and some new fields
such as computer aided molecular design use stochastic programming. An extensive review of
stochastic programming methods and their applications in process engineering field is given in [1]



and [2]. Some of the recent applications include enterprise-wise process network [3], planning and
scheduling related tasks [4, 5] and environment related applications [6, 7, 8]. Many of these prob-
lems are nonlinear complicating the problem solution.

A general stochastic nonlinear programming problem can be represented as follows:

Optimize J = P1(f(θ, x, u))

such that

P2(g1(θ, x, u)) = 0

P3(g2(θ, x, u) ≤ 0) ≥ α

where, θ is the decision variable, x is the set of system parameters, u is the set of uncertain variables
and P1, P2 and P3 are probabilistic measures such as expected value or variance. The uncertainty
may affect the objective function and/or any of the constraints to make it a stochastic programming
problem.

Even though important, solution of these SNLP problems is hard due to the inherent com-
plexity and various limitations of available solution algorithms, high computational requirements be-
ing one of them. This work proposes a new algorithm, the L-shaped BONUS, to solve large scale
stochastic nonlinear programming problems in a computationally efficient manner. The proposed
algorithm is an integration of the traditional sampling based L-shaped method with a new algorithm
BONUS (Better Optimization of Nonlinear Uncertain Systems), proposed to solve the SNLP prob-
lems. This new algorithm is shown to have better computational properties through an illustrative
example, a process systems engineering relevant problem and a large scale optimization problem.
The algorithm can also be used to convert an SNLP problem into an SLP (stochastic linear program-
ming) problem.

The next section briefly overviews the common SNLP solution algorithms and gives the
motivation for proposing a new algorithm by looking at their limitations. Section 3 elaborates on the
new BONUS algorithm along with the reweighting scheme, central to the new algorithm and section
4 reviews the sampling based L-shaped algorithm. Section 5 explains the integration of these con-
cepts into the proposed L-shaped BONUS algorithm. Sections 6, 7 and 8 give details of algorithm
steps and computational advantages through various case study problems. The final section draws
concluding remarks.

2 Methods for SNLP problem solution

2.1 General overview

Over the years, a lot of research has gone into devising strategies to solve the SNLP prob-
lems. One kind of solution methods, such as the chance constraint programming method [9], convert
these problems into deterministic equivalents. Deterministic optimization methods can then be ap-
plied. But these methods are restricted to problems with known and stable density functions of the
random variables. The second kind of solution methods are aimed at extending the deterministic
nonlinear programming methods to included uncertainty [10, 11, 12]. For optimization problems
than can be decomposed into two or multiple stages, decomposition based stochastic programming
methods such as the L-shaped method are developed [13]. The basic L-shaped method is modified
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Figure 1: Optimization under Uncertainty

for different problem types, which includes regularized decomposition method [14] and piecewise
quadratic form of L-shaped method [15]. Methods based on the stochastic programming Lagrangian
include the basic Lagrangian dual ascent method [13], the Lagrangian finite generation method for
linear quadratic stochastic programs [16] and the progressive hedging algorithm [17]. These de-
composition based methods require convexity of the problem and/or dual block angular structure.
The stochastic quasi-gradient methods (SQG) are less specialized than the other algorithms but are
useful to solve problems with complex objective functions and constraints [18]. The SQG methods
represent one of the first computational developments in stochastic programming. An exhaustive
review of all these methods is omitted for brevity and the reader is referred to respective references
made for these solution algorithms. Even though important, application of these methods to solve
real life problems has always been restricted. This is because of various limitations in the form of
functional requirements (convexity, differentiability etc.) or distribution of uncertain variables (stable).

2.2 Sampling based methods

In stochastic programming problems it is common to use sampling approximations when
the probability distributions of uncertain parameters are known. The aim is to model the complete
uncertain parameter space as closely as possible through sufficient number of samples. Figure 1
represents the generalized solution procedure for sampling based approach. The structure is similar
to that for a deterministic problem apart from the fact that the deterministic model is replaced by a
stochastic model with the (shaded) sampling loop representing the discretized uncertainty space.
The goal in stochastic programming is to improve the probabilistic objective function with each itera-
tion. In the set up of figure 1, calculation of these terms needs simulation of the stochastic modeler at
each iteration. In traditional sampling based methods, this is achieved by model simulations for given
number of samples and subsequent computation of the probabilistic function (e.g. expected value
of the objective function). Two such methods are the sampling based L-shaped method [19, 20] and
Stochastic Decomposition algorithm [21]. L-shaped method is a scenario based method. But the
number of scenarios increase exponentially as the number of uncertain variables increase. Monte
Carlo sampling avoids this problem and hence Monte Carlo sampling based approximations have
been incorporated in the L-shaped method. The key feature is the use of statistical estimates to



obtain confidence intervals on the results.

Simulation of the stochastic modeler at each iteration is a major drawback of the sampling
based methods. For sample size n, the model needs to be simulated n times in each iteration as a
part of the stochastic modeler. With larger sample size, required for better approximation, computa-
tional load increases tremendously. Next section explains BONUS, an algorithm which overcomes
this problem through the use of reweighting scheme.

3 BONUS

Sampling based approaches to solve stochastic nonlinear programming problems suffer
from the main drawback of computational complexity as mentioned in the previous section. Re-
cently, a new method has been proposed to solve SNLP problems which holds its advantage by
circumventing the problem of repeated model simulations. This new method is Better Optimization
of Nonlinear Uncertain Systems (BONUS) [22]. Figure 2 shows the BONUS algorithm structure.

Figure 1 has shown the standard stochastic programming algorithm structure with the sam-
pling loop requiring repeated model simulations. Compared to this, BONUS algorithm uses reweight-
ing approach to skip these repeated model simulations. This reweighting scheme is central to the
BONUS algorithm. An initial, uniform base distribution of the uncertain parameters is generated. For
the first iteration, the algorithm emulates the standard sampling based algorithm in that the model is
simulated for each sample to determine the output distribution. At the subsequent iterations, when
the optimizer needs new estimates of the probabilistic objective function, new set of samples are
taken. But this time the model is not re-run, instead reweighting approach is applied to approxi-
mate the probabilistic behavior of the new output distribution. Figure 2 illustrates this step of the
algorithm. The reweighting scheme uses the initial sample set, initial output distribution and new
sample set data to estimate information about the new output distribution. Owing to the importance
of reweighting in the proposed algorithm, it will be explained in the following section.
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Figure 2: Bonus Algorithm



3.1 The reweighting approach

Reweighting approach is based on the various reweighting schemes proposed in [23]. It
is an extension of the importance sampling concept of estimating something about a distribution
(target distribution f(x)) using observations from a different distribution (design distribution f̂(x)),
where these distributions are represented by respective probability density functions. Let X be a
random variable with probability density function f(x) and Q(X) be a function of X. Then to estimate
a certain property of Q(X), such as the expected value µ = Ef [Q(X)], importance sampling solves
a different problem of estimating Ef̂ [Y (X)], where

Y (x) = Q(x)
f(x)

f̂(x)
(1)

and samples Xi are now drawn from f̂(x). Distribution f̂(x) can be designed to achieve desired
results (e.g. reduced variance, better representation of rare events). The weight function W (x) is
defined as

W (x) =
f(x)

f̂(x)
(2)

which gives the likelihood ratio between target and design distributions and weighs observations of
Q(x). To perform this estimation effectively, Hesterberg [23] proposed various design distributions
f̂(x) (e.g. defensive mixture distributions) and estimation schemes (integration estimate, ratio esti-
mate). In ratio estimate, weights Wi are normalized to avoid problems when they do not sum to 1.
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The normalized weights Vi and estimate µ is given as

Vi =
Wi∑n

j=1 Wj

(3)

µ =
n∑

i=1

ViQ(Xi) (4)

where n is the sample size. Means, higher moments and percentiles can be computed using such
relations. The reweighting scheme in the proposed algorithm is based on the ratio estimate just ex-
plained.

The reweighting approach, as used in the BONUS algorithm, is schematically shown in fig-
ure 3. Suppose X represents the uncertain variable in stochastic programming problem and Q(X) is
the output of stochastic modeler. For the first iteration, base case samples X∗

i with uniform distribu-
tion (f̂(x)) are drawn and the model is simulated for each sample to get the complete model output
distribution Q(X∗

i ). During the subsequent iterations, new samples Xi of required distribution (f(x))
are drawn. Having known the model response Q(X∗

i ) for sample set X∗
i from distribution f̂(x), it is

possible to use equation 4 to estimate the expected value of model response Q(Xi) for new sample
set Xi from distribution f(x). The expected value of the stochastic model response Q(Xi) for new
sample set Xi is therefore given as

Ef [Q(Xi)] =
n∑

j=1

f(Xj)

f̂(X∗
j )∑n

i=1
f(Xi)

f̂(X∗
i )

Q(X∗
j ) (5)

In a sampling based algorithm, this procedure requires determining the probability density
function from the available sample set. This is carried out using the Gaussian Kernel Density Esti-
mation technique [24] which is a nonparametric density estimation technique. The basic idea behind
this technique is to place a bin of certain width 2h around every sample X and weigh that sample by
the number of other samples Xi in the same bin. If this bin is replaced by a kernel function such as
normal density function, the density function for the sample set Xi is calculated using equation 6.

f(X) =
1

n.h

n∑
i=1

1√
2π

e−
1
2
(

X−Xi
h

)2 (6)

where h is the window width, also called the smoothing parameter or bandwidth. Value of h decides
the fineness of density estimation. For this work, it is taken as the standard deviation of the sample
set.

Thus, given two sample sets, equation 6 is used to determine the density function at each
sample point for both the distributions which are then used in equation 5 to find out the output distri-
bution for the second sample set.

For the proposed algorithm, this idea of reweighting is used in the sampling based L-shaped
method to solve decomposable SNLP problems in computationally efficient manner. But before de-
scribing the proposed algorithm, it is prudent to understand the L-shaped method which is explained
in next section.
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4 L-shaped method with sampling

The basic L-shaped method is a scenario based method applicable for discrete distributions
to solve two or multi stage stochastic programming problems [25]. The basic idea of the L-shaped
method is to approximate the nonlinear term in the objective function of the problem. The principle
behind this approach is that, since the nonlinear objective function term (recourse function) involves
solution of all the second stage recourse problems, numerous function evaluations for it are avoided.
This term therefore is used to build a master problem (with first stage decision variables) and the re-
course function is exactly evaluated only as a subproblem, referred to as the second stage problem.
Figure 4 shows the algorithm structure.

The method is essentially a Dantzig-Wolfe decomposition (inner linearization) of the dual
or a Benders decomposition (outer linearization) of the primal. The problem is decomposed into two
or multiple stages. The first stage problem (master problem) uses a linear approximation (also the
lower bound) of the second stage recourse function to fix the first stage decision variables. These
first stage decisions are passed on to the second stage (sub problem), where the dual of the second
stage problem is solved for different scenarios. The solution of all the dual problems is used to cal-
culate the expected value of the recourse function which is also its upper bound. Two kinds of cuts
are sequentially generated, the feasibility cut and the optimality cut. These cuts are added to the
master problem for better approximation of the recourse function in the subsequent iterations. The
algorithm terminates when the upper bound from the sub problem is less than or equal to the lower
bound from the master problem [26].

For continuous distributions, sampling is used to approximate the distribution. Use of im-
portance sampling as a variance reduction technique was proposed in [19] while use of sampling in
the basic L-shaped method was proposed in [20]. Samples, instead of scenarios, are used in the
second stage recourse function calculations of the L-shaped method. Statistical approximations of



the recourse function and the simplex multipliers are used to generate the cuts and the bounds. This
method is known as the internal sampling method. In context of the sampling based algorithms ex-
plained in section 2, sub-problem solution for each realization of uncertain space can be compared
with the stochastic modeler in figure 1.

Thus to summarize, decomposition strategy of L-shaped method offers computational sav-
ings but is still not very efficient for the SNLP problems. Therefore, we are proposing integration
of decomposition structure and reweighting scheme. In the next section, the proposed L-shaped
BONUS algorithm is detailed which achieves the same.

5 Proposed algorithm: L-shaped BONUS

The sampling based algorithm suffers from the computational bottleneck of repeated model
simulations while BONUS uses reweighting approach to bypass this problem. The proposed algo-
rithm is an integration of the sampling based L-shaped method with BONUS. The central idea of
reweighting in BONUS is utilized in this algorithm. The modification is in the second stage recourse
function calculation procedure of the L-shaped method. Since the structure of the algorithm is based
on the L-shaped method and the application of the reweighting concept is similar to that in BONUS,
mathematical details are not reproduced here and can be found in sections 3 and 4. The proposed
algorithm is shown schematically in figure 5 and explained below.

5.1 Algorithm details

The given stochastic programming problem is first converted into a two stage stochastic
programming problem with recourse. The first stage decisions are made using a linearized approx-
imation of the second stage nonlinear recourse function and utilizing the feasibility and optimality
cuts, if generated. This also determines the lower bound for the objective function. The second
stage objective is the expected value of the recourse function, which depends on the first as well as
second stage decision (recourse) variables. Following the sampling based L-shaped method struc-
ture, the first stage decisions are passed on to the second stage where the sub-problem is solved
for each uncertainty realization. The idea of the proposed algorithm is to reduce computations at the
sub-problem solution stage by using reweighting scheme to bypass nonlinear model computations.
The reweighting scheme, as mentioned in section 3, needs the model output distribution for base
case uniform input distribution. For this purpose, during the first optimization iteration, the nonlinear
model is simulated and sub-problem solved for each sample. Model simulation results for the base
case constitute the base case output distribution. Sub-problem solution for each sample is used
to derive the optimality cut for the master problem and generate an upper bound for the objective
function as per the L-shaped algorithm. Second optimization iteration solves the first stage master
problem using these cuts. The new first stage decisions along with an updated lower bound are
passed on to the second stage problem. During this iteration, when new set of samples are taken by
the stochastic modeler, model simulation and sub-problem solution is not performed for each sam-
ple. The reweighting scheme, with Gaussian Kernel Density Estimation, as explained in section 3,
is used to predict the probabilistic values (expectation) of the model output. The base case output
distribution along with the two sample sets are used for this prediction. The expected value of the
model output is used to solve only one second stage dual sub-problem to generate cuts and update
the objective function upper bound. It should thus be noted that for second iteration, only one sub-
problem is solved. So not only the nonlinear model simulation time but also the sub-problem solution



First Stage Decisions
Making

Internal Sampling
(To approximate Recourse

function)

First 
Iteration?

Second Stage 
Decision Making

Model

Reweighting 
scheme

Algorithm
Start

Yes

No

Final Solution

Output distribution for
base sample set

(Base sample set)

Figure 5: The proposed L-shaped BONUS algorithm structure



time is saved. This procedure of reweighting based estimation is continued in every subsequent
iteration till the L-shaped method based termination criteria is encountered.

The primary advantage of the proposed L-shaped BONUS algorithm, as has been repeat-
edly stressed, is its computational efficiency. Repeated model simulations, which are a bottleneck
in stochastic optimization procedure, being avoided, problem solution becomes faster. The effect is
expected to be more pronounced in case of nonlinear and/or high dimensional models, as the ones
often encountered for real life systems. Another advantage of this algorithm is its ability to convert
an SNLP problem into an SLP problem by using reweighting to approximate nonlinear relationships
(see section 8 for such an application).

The disadvantage is that reweighting is an approximation and the quality of this approxi-
mation is a point of contention. It has been shown that estimation accuracy of reweighting improves
with increasing sample size, which also increases the computational load to a certain extent. The
exact quantitative nature of this relationship is difficult to establish. It is thought that it will depend on
the particular nonlinear system. For details readers are referred to [22]

Finally, as with any sampling based optimization technique, sampling properties are very
important for this algorithm. The accuracy of the reweighting scheme depends on the number and
uniformity of samples (see section 8). For this algorithm, we propose to use the Hammersley Se-
quence Sampling (HSS) which is shown to be very efficient [27, 28]. The sampling technique is
based on the generation and inversion of Hammersley points and is shown to have k dimensional
uniformity property.

6 Illustrative example: Farmer’s problem

This section explains the application of the proposed algorithm through a simple illustrative
farmer’s problem that has been extensively studied in the field of stochastic programming [13]. The
problem, as formulated in [13], is a stochastic linear programming problem which is modified into an
SNLP problem.

6.1 Problem formulation

The goal of the problem is to decide the optimal allocation of 500 acres of plantation land
amongst three crops, wheat, corn and sugar. The farmer needs at least 200 tones (T) of wheat
and 240 T of corn for cattle feed. These amounts can be produced on the farm or bought from a
wholesaler. The excess production can be sold in the market. The purchase cost is 40% more than
selling cost due to wholesaler’s margin and transportation cost. Sugar beet sells at a cost of $36/T
if the amount is less than 6000 T. Any additional quantity can be sold at $10/T only. Through experi-
ence the farmer knows that the mean yield of crops is 2.5 T, 3 T and 20 T per acre for wheat, corn
and sugar, respectively. But these values are uncertain owing to various factors. The objective is to
maximize the expected profit in the presence of uncertain yields. Table 1 summarizes the data and
more details about the SLP can be found in [13].

For this illustration, to convert the problem into an SNLP problem, the uncertain yield is
assumed to be dependent on four different factors which are uncertain. These four factors are the
average rainfall, availability of sunlight, attack probability of a crop disease and the probability of



Table 1: Data for farmer’s problem
Wheat Corn Sugar Beets

Yield (T/acre) 2.5 3.0 20
Planting cost ($/acre) 150 230 260

Selling price ($/T) 170 150 36 under 6000 T
10 above 6000 T

Purchase price ($/T) 238 210 -
Minimum requirement (T) 200 210 -

attack by pests. The annual yield of the crops is nonlinearly related to these four factors. Although
the relationships presented here are hypothetical and simplistic, it is expected that some nonlinear
equations will govern these relationships. The dependencies are as follows:

Yr = 2 αr (1− αr

2
) αr ∈ [0, 2] (7)

Ys = 1.58 (1− e−αs) αs ∈ [0, 1] (8)

Yd = 1− αd αd ∈ [0, 1] (9)

Yp = 1− α2
p αp ∈ [0, 1] (10)

where,

• Yi are fractions of the maximum yield due to corresponding effects

• αr: Fractional rainfall of the yearly average

• αs: Fractional sunlight of the yearly average

• αd: Attack probability of a crop disease

• αp: Attack probability of pests

The overall fractional yield of the crops is given by

Yactual = Yr × Ys × Yd × Yp × Ymax (11)

where Yactual is the actual yield of the crops and Ymax is the maximum possible yield if all the condi-
tions are perfect. Once these equations are incorporated in the original model, the resulting stochas-
tic programming problem is given as:

Minimize 150x1 + 230x2 + 260x3

+ E[238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4]



subject to the following constraints

x1 + x2 + x3 ≤ 500,

t1(ξ)x1 + y1 − w1 ≥ 200,

t2(ξ)x2 + y2 − w2 ≥ 240,

w3 + w4 ≤ t3(ξ)x3,

w3 ≤ 6000,

x1, x2, x3, y1, y2, w1, w2, w3, w4 ≥ 0

where E is the expectation operator over the uncertain variables ξ. ti(ξ) is the yield of crop i given
by equation 11 and nonlinearly related to the uncertain variables through equations 7 to 10.

This problem when converted into a two stage stochastic programming problem with re-
course is given as:

First Stage Problem

Min 150x1 + 230x2 + 260x3 + θ

s.t. x1 + x2 + x3 ≤ 500,

Gl x + θ ≥ gl l = 1 . . . s,

x1, x2, x3 ≥ 0,

where θ is the linear approximation of the expected value of the recourse function. x1, x2 and x3 con-
stitute the first stage decision variables. The constraints include the problem defined constraints on
the first stage decision variables and optimality cuts applied during iterations of the L-shaped method.

Second Stage Problem

Q(x, ξ) = min{238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4}
s.t. t1(ξ)x1 + y1 − w1 ≥ 200,

t2(ξ)x2 + y2 − w2 ≥ 240,

w3 + w4 ≤ t3(ξ)x3,

w3 ≤ 6000,

y1, y2, w1, w2, w3, w4 ≥ 0,

Here, y1, y2, w1, w2, w3 and w4 are the second stage decision variables (recourse variables). The
constraints on the recourse variables in the original problem are considered in the second stage
problem solution.

6.2 Problem solution

The problem, when solved using sampling based L-shaped method, involves dual formula-
tion of the nonlinear second stage problem and solution of the dual problem in the second stage for
each sample from the given sample set. Even if the nonlinearity is separated from the problem by
considering directly the yield in the second stage problem (in place of the nonlinear relationships),
the task of dual problem solutions for the samples can be demanding.



The proposed algorithm can simplify the task by using reweighting to bypass the nonlin-
ear model, as represented by figure 5. The ability of reweighting to effectively model the nonlinear
relationship between the uncertain parameters and crop yield will help converting the problem into
an SLP one with reduced computations.

The exact solution procedure is as follows. At every second stage problem solution, uncer-
tain parameters are sampled n times, n being a pre-decided sample size. During the first iteration,
the samples are used to calculate the value of crop yield and the yield value is used to solve the dual
for each sample (i.e. n dual problem solutions) and optimality cut, if needed, is generated. The first
sample set is stored as the base sample set.

At subsequent iterations, during the second stage solution, the new set of n samples are
taken and instead of solving the dual for each sample through yield calculation, reweighting is used
to calculate the expected value of the crop yield. This single expected value is used in the dual prob-
lem which is now converted into a linear one. Moreover, with one expected value of the yield, the
dual problem needs to be solved only once to calculate the expected value of the recourse function
and generate the cut if needed. Use of reweighting therefore simplifies the problem on two counts.
First it bypasses the nonlinear part of the model and converts it into a linear model and then com-
putations are simplified by solving just one problem at the second stage. Reproduced below are the
the first two iterations of the problem solution to explain the steps.

Solution: Iteration 1

• Step 0: s=0 (iteration count)

• Step 1: θ1 = −∞ (very low value). Solve

Min 150x1 + 230x2 + 260x3

s.t. x1 + x2 + x3 ≤ 500

x1, x2, x3 ≥ 0

The solution is x1
1 = x1

2 = x1
3 = 0

• Step 2: Sample the uncertain variables n times to generate the base sample set {u*}
• Step 3: Calculate the yield (n values) of the crop using the n sampled uncertain variables and

relations 7 to 10.

• Step 4: Solve the following dual problem for the n samples of crop yield. The values of x1
i are

passed on to the second stage.

Max π1(200− Y1 x1
1) + π2(240− Y2 x1

2)− π3(Y3 x1
3)− 6000π4

s.t. π1 ≤ 238

π2 ≤ 210

π1 ≥ 170

π2 ≥ 150

π3 + π4 ≥ 36

π3 ≥ 10

π1, π2, π3, π4 ≥ 0 (12)



The solution of problem 12 for first sample is π1 = 236, π2 = 210, π3 = 36, π4 = 0. The expected
value of the recourse function (w) calculated after all the dual problem solutions is w = 98000.
Since w > θ, optimality cut is introduced.

Iteration 2:

• Step 0: s=1 (iteration count)

• Step 1: Solve

Min 150x1 + 230x2 + 260x3 + θ

s.t. x1 + x2 + x3 ≤ 500

θ ≥ 98000− [610.1 636.4 727.4][x1 x2 x3]
T

x1, x2, x3 ≥ 0 (13)

The solution of problem 13 is x1 = 0, x2 = 0, x3 = 500 and θ = −264685.247.

• Step 2: Sample the uncertain variables n times to generate the new sample set {u}
• Step 3: Calculate the estimated yield of the crops using the base and new sample sets bypass-

ing relations 7 to 10. The estimated yield is 0.842.

• Solve the dual problem given by equation set 12 only once using the estimated value of the crop
yield. The solution of the problem is π1 = 238, π2 = 210, π3 = 10, π4 = 26. The expected value
of the recourse function (w) calculated after the dual problem solutions is w = −158986.526.
Another optimality cut is introduced.

The procedure is then followed according to iteration 2 (using reweighting instead of n dual problem
solutions) till the termination criteria of w ≤ θ is satisfied.

6.3 Results of the farmer’s problem

Comparative results for the farmer’s problem using sampling based L-shaped method and L-
shaped BONUS algorithm are shown graphically in figures 6 and 7 which also compare the results for
two different sampling techniques, Monte Carlo sampling (MCS) and Hammersley sequence sam-
pling (HSS). Figure 6 compares the objective function values at final solution as a function of the
sample size. It is seen that the solutions for both algorithms approach a steady state value with
increasing sample size. Moreover difference in the results for the two algorithms is within reasonable
limits, 1.7% for the maximum sample size, indicating that reweighting approximation is not sacrificing
accuracy. Figure 7 gives the plots for one decision variable (land allocation to crop 3). Qualitatively,
it shows a similar variation as that for the objective function.

Based on these plots HSS emerges as a more efficient sampling technique than MCS. The
results for HSS appear to reach the steady state value faster than for MCS as the sample size is
increased. This claim is further corroborated by figure 8 which plots the iterations needed to reach
the solution for different sample sizes. It can be observed that for standard L-shaped method, MCS
sampling technique needs more iterations in general than HSS technique. The previously mentioned
k dimensional uniformity property of HSS accounts for this observation. It has been previously shown
that the number of points required to converge to the mean and variance of a derived distributions
by the HSS method is on average 3 to 100 times less than the MCS and other stratified sampling



techniques [27]. For the same sample size, the HSS method therefore approximates a given distri-
bution better than the MCS. This results in faster convergence of HSS based algorithms in general.
For the proposed algorithm though, both, MCS and HSS sampling techniques need 6 iterations irre-
spective of the sample size. This is possibly due to the approximation introduced by the reweighting
scheme. The approximation renders the iteration requirements insensitive to sample size and sam-
pling method changes. But better values of final solutions (figures 6 and 7) confirm the superiority of
the HSS method over MCS.
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Figure 6: Variation of objective function with sample size for farmer’s problem

Computational time is an important factor while comparing these algorithms. Computational
time increases exponentially with sample size for the standard L-shaped method while it increases
almost linearly for the proposed L-shaped BONUS algorithm. The computational efficiency of L-
shaped BONUS therefore becomes more pronounced as the sample size is increased. With the
need to increase sample size to improve accuracy, the proposed algorithm offers a distinct advan-
tage.

The next section shows an application of the proposed algorithm to a process systems en-
gineering relevant problem.

7 Blending problem

The problem reported here is typical for a petroleum industry manufacturing finished petroleum
products such as lube oils. Large number of natural lubricating and specialty oils are produced by
blending a small number of lubricating oil base stocks and additives. The lube oil base stocks are
prepared from crude oils by distillation. The additives are chemicals used to give the base stocks
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desirable characteristics which they lack of to enhance and improve existing properties [29, 30]. In
the context of such an application, a general chemical blending optimization problem is explained
below followed by results comparing different solution and sampling techniques.

7.1 Problem formulation

The aim is to blend n different chemicals (such as lube oil base stocks and additives) to form
p different blend products (lube oils) at minimum overall cost. Each chemical (base stock) has vary-
ing fractions of m different components (such as C1-C4 fraction, C5-C8 fraction, heavy fraction, inerts
etc.). Market demands call for production of a particular quantity of each blend product. Blend prod-
ucts catering to different applications (e.g. high performance lube oil, grease, industrial grade lube oil
etc.) have different specifications on fractions of m different components (for a lube oil such specifi-
cations will depend on physical property requirements like pour point, viscosity, boiling temperature).
These specifications need to be satisfied to market the blend products. The task is complicated due
to the presence of q impurities in the chemicals. Exact mass fractions of these impurities in some
of the chemicals (base stocks) are uncertain. Such uncertainties may arise when the chemicals to
be blended are themselves product of other processes (such as crude distillation for lube oil base
stocks). There are also specifications on the maximum amount of impurity in a blend product. If
the impurity content of a blend product does not satisfy the regulation, the product has to be treated
to reduce impurities below specifications. The treatment cost depends on the amount of reduction
in the impurities to be achieved. The goal in formulating the stochastic optimization problem is to
find the optimum blend policy to minimize raw material cost and expected blend product treatment
cost in the presence of uncertainty associated with impurity content of the chemicals. The stochastic
programming problem is formulated as below.

Minimize
n∑

i=1

p∑

k=1

CiWik + E

[ p∑

k=1

CT θk

]
(14)

Subject to:

n∑
i=1

Wik = W̄k ∀k = 1, . . . , p (15)

n∑
i=1

xijWik ≥ x̄jk ∀k = 1, . . . , p and j = 1, . . . , m (16)

q∑

l=1

(Iil(u))αl = I∗i ∀i = 1, . . . , n (17)

n∑
i=1

I∗i Wik = Īk ∀k = 1, . . . , p (18)

Īk.(1− θk) ≤ Ispec
k ∀k = 1, . . . , p (19)

Here, Wik is the weight of chemical i in blend product k. Ci is the per unit cost of chemical i while
CT is the blend product treatment cost per unit reduction in the impurity content. W̄k is the total pro-
duction requirement of blend product k. xij is the fraction of component j in chemical i and x̄jk is the
specification of component j in blend product k. Iil(u) is the (possibly uncertain) fraction of impurity
l in chemical i and I∗i is the ‘impurity parameter’ of chemical i. This impurity parameter gives the



extent to which a chemical is impure, as a nonlinear function of various impurities. Coefficients αl

decide the importance of a particular impurity in the final product. Īk is the final impurity parameter
of a blend which depends on the weight contribution of each chemical in a particular blend. Ispec

k is
the maximum permitted impurity content in the blend product. θk is the purification required for blend
k to satisfy the impurity constraint.

The objective function consists of two parts. The first part is the cost of chemicals used
to manufacture the blend products and the second part is the expected treatment cost of the off-spec
products. The first set of constraints ensures the required production of each blend product. Second
constraint set ensures that component specifications for the blended products are satisfied. These
specifications are expressed in terms of the minimum amount of each component needed in the
blend product. Third set of constraints calculates the impurity parameter for each chemical, as a
function of various individual impurities. The fourth equation calculates the ‘impurity parameter’ for
each blend product depending on the blending policy. The last set of constraints makes sure that all
the impurity related specifications are satisfied by each blend product.

In sampling based algorithms, the expected cost is calculated using various realizations
of uncertain parameters (i.e. samples) and the corresponding treatment costs. Parameter Iil(u) is
then a function of each sample. The two stage stochastic programming blending problem is given as

First stage problem

Minimize
n∑

i=1

p∑

k=1

CiWik + E[R(W, θ, u)] (20)

where
n∑

i=1

Wik = W̄k ∀k = 1, . . . , p (21)

n∑
i=1

xijWik ≥ x̄jk ∀k = 1, . . . , p and j = 1, . . . , m (22)

Here E[R(W, θ, u)] is the expected value of the recourse function which is calculated in the second
stage.

Second stage problem

Minimize E[R(W, θ, u)] =

Nsamp∑
r=1

p∑

k=1

CT θk (23)

where
q∑

l=1

(Iil(r))
αl = I∗i ∀i = 1, . . . , n (24)

n∑
i=1

I∗i Wik = Īk ∀k = 1, . . . , p (25)

Īk.(1− θk) ≤ Ispec
k ∀k = 1, . . . , p (26)

The first stage decision variables are Wik. The second stage considers various realizations of uncer-
tain parameters Iil through Nsamp samples. This second stage problem minimizes the expected value



Table 2: Data for chemicals in blending problem
A1 A2 A3 A4 A5 A6 A7

C1 fraction 0.20 0.10 0.50 0.75 0.10 0.30 0.20
C2 fraction 0.10 0.15 0.20 0.05 0.70 0.30 0.55
C3 fraction 0.60 0.65 0.22 0.12 0.10 0.30 0.16
I1 fraction 0.02 0.07 0.01 0.02 0.043 0.015 0.012
I2 fraction 0.01 0.005 0.02 0.02 0.01 0.04 0.021
I3 fraction 0.06 0.023 0.02 0.03 0.022 0.028 0.055

Cost ($/unit weight) 104 90 135 130 115 126 120

Table 3: Data for blend products
P1 P2 P3

C1 fraction 0.1 0.6 0.2
C2 fraction 0.5 0.1 0.1
C3 fraction 0.2 0.2 0.5

Production (weight units) 100 120 130
Ispec
k 0.9 1.05 1.2

of the recourse function through decision variables θk. This is a stochastic programming problem with
a nonlinear relationship between second stage parameters Iil and I∗i .

7.2 Simulations and results

This work considers the problem with 7 chemicals (A1, . . . , A7), 3 components (C1, . . . , C3),
3 blend products (P1, . . . , P3) and 3 different impurities, such as sulfur, ash and heavy residue, i.e.
n = 7, m = 3, p = 3 and q = 3. Data for the problem is reported in tables 2 and 3. α1, α2 and
α3 are 0.9, 1.3, and 1.4, respectively and the purification cost CT is $ 10000 per unit reduction in
impurity. Each chemical has one uncertain impurity fraction. Here I12, I15, I23, I26, I27 and I34 are
uncertain, varying by ±25% around the values reported in table 2. All these uncertain parameters
are normally distributed in the given range, i.e. ±25% range corresponds with the ±3σ range where
σ is the standard deviation of normal distribution.

The problem is solved using the standard L-shaped algorithm and the proposed L-shaped
BONUS algorithm, both using the HSS and MCS techniques. In the L-shaped BONUS algorithm,
nonlinear relationship between Iil and I∗i is bypassed using reweighting scheme.

The optimum objective function value is plotted in figure 9 for different sample sizes. The
results show that with HSS technique, average difference in the absolute values of the final objective
function for the standard L-shaped and L-shaped BONUS algorithm is only 1.6%, and this difference
reduces with increasing sample size. Figure 10 plots the number of iterations required to achieve
the solution. It can be observed that the L-shaped algorithm consistently requires more iterations. It
is also observed that the L-shaped BONUS algorithm achieves an average reduction of 75% in so-
lution time over standard L-shaped algorithm. This significant reduction accompanied by a relatively
small change in the final results makes L-shaped BONUS algorithm very attractive. Comparison
between the HSS and MCS techniques throws up observations and conclusions similar to those for
the farmer’s problem. Thus MCS technique in general requires more iterations than HSS technique
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Figure 9: Variation of objective function with sample size for blending problem

and results with HSS settle much faster than with MCS.

This section discussed the application of the proposed L-shaped BONUS algorithm to a
process engineering related problem. Given the prevalence of stochastic nonlinear programming
problems in this field, the reported advantages of the L-shaped BONUS algorithm make this an im-
portant addition to the available solution techniques. The next section discusses a large scale real
life problem of sensor placement in a water distribution network to further emphasize the advantages
of this algorithm.

8 Sensor placement problem

Water pollution has a serious impact on all living creatures, and can negatively affect the
use of water for drinking, household needs, recreation, fishing, transportation and commerce. The
tragic events of September 11 have redefined the concept of risk and uncertainty, thus water security
has became a matter of utmost importance to national and international sustainability. In order to
prepare for catastrophic events, water utilities are feeling a growing need to detect and minimize the
risk of malicious water contamination in distributed water networks. The problem assumes interdisci-
plinary nature owing to contributions from diverse fields such as, urban planning, network design and
chemical contamination propagation. Hence a systems based effort initiated by systems engineers,
including process systems engineers, is called for.

Integration of adequate number of sensors at appropriate places in a water distribution net-
work can provide an early detection system where appropriate control measures can be taken to
minimize the risk. Since economics govern the maximum number of sensors available for this task,
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optimal utilization by placing them at the most appropriate locations in the network is essential re-
sulting in an optimization problem. However, in order to obtain a robust solution in the face of risk,
it is necessary to consider various sources of uncertainty. This converts the deterministic optimiza-
tion problem into a stochastic optimization problem. The next section explains the exact problem
formulation.

8.1 Problem formulation

The problem aims to find the optimum locations of a given number of sensors to minimize
cost and risk in the face of uncertain demands at various junctions. It is an SNLP problem since the
relationship between uncertain demands and flow patterns is nonlinear.

The problem models a water network as a graph G = (V,E) where E is a set of edges
representing pipes, and V is a set of vertices, or nodes, where pipes meet (e.g. reservoirs, tanks,
consumption points etc.). An attack is modelled as the release of a large volume of a harmful con-
taminant at a single point in the network with a single injection. The water network simulator EPANET
[31] is used to determine an acyclic water flow pattern p, given a set of available water sources, as-
suming each demand pattern p holds steady for a sufficiently long time. The two stage stochastic
mixed integer programming problem is given as



First Stage Problem

Minimize
n∑

i=1

n∑
j=1

βT
ijsij + E[R(c, s, u)]

where

sij = sji i = 1, . . . , n− 1, i < j∑

(i,j)∈E,i<j

sij ≤ Smax sij ∈ (0, 1); (i, j) ∈ E

Second Stage Problem

Minimize E[R(c, s, u)] =

Nsamp∑

l=1

n∑
i=1

P∑
p=1

n∑
j=1

S αip(l) δjp(l) cipj

where

cipi = 1 i = 1, . . . , n; p = 1, . . . , P

cipj ≥ cipk − skj (i, k, j) ∈ E; s.t. fkjp = 1

Here βij is the cost of sensor installed on branch (vi, vj), αip is the probability of attack at node vi,
during flow pattern p, conditional on exactly one attack on a node during some flow pattern, δjp is the
population density at node vj while flow pattern p is active, and cipj is the contamination indicator.
cipj = 1 if node vj is contaminated by an attack at node vi during pattern p and 0 otherwise. sij is a
binary variable indicating sensor placement. It is 1 if a sensor is placed on (undirected) edge (vi, vj)
and 0 otherwise. Smax is the maximum number of sensor allowed in the network. The risk is defined
under a fixed number of flow patterns represented by the binary parameter fijp. fijp = 1 if there is
positive flow along (directed) edge e = (vi, vj) during flow pattern p and 0 otherwise. S is the cost
of a person getting affected by contaminated water (such as treatment cost) and converts risk into
financial terms.

In the objective, the first term gives the total cost of implementing sensors in the network
while the second term gives the expected cost due to the risk of contamination propagation. Uncer-
tain flow demands of known probability distributions at various nodes result in multiple flow patters p
in the network. It is necessary to consider all these patterns to simulate every possibility of contami-
nation propagation. This makes the problem stochastic. The uncertain space is characterized here
through Nsamp samples in order to use sampling based L-shaped BONUS algorithm.

The first stage problem uses sij as the decision variables to minimize total sensor cost and
expected risk which constitutes the recourse part of the problem. The constraint in the first stage
problem restricts the maximum number of sensors used. Second stage problem minimizes the ex-
pected risk for Nsamp realizations of uncertain demands. cipj constitute the second stage decision
variables. For this second stage problem, first set of constraints ensures that when a node is directly
attacked, it is contaminated while the second set propagates contamination from node vk to node vj

if node vk is contaminated, there is positive flow along a directed edge from vk to vj and there is no
sensor on that edge. See [32, 33, 34] for details about the problem formulation.

The network selected for the case study is a modification of the “Example Network 1” from
EPANET [35, 31]. The network is shown in figure 11. There are 12 nodes in the network, comprising



of two pumping stations, one storage tank and nine consumptions points. Four nodes have uncer-
tain demands while the attack probability is considered to be fixed and equal at all the nodes. The
network simulations generate the flow patterns which give the values of fipj which are then used for
the second stage problem solution.

This is a large scale optimization problem with 14 first stage decision variables, 1440 re-
course variables and 1575 first and second stage constraints. Yet, from practical point of view, this
constitutes a trivial problem in that a realistic water distribution network will have hundreds of nodes
and more branches. The simulation of such networks can be a cumbersome task.

Tank

Pumping 
Station 1

Pumping
Station 2

1 10 11 12 13

21

2

22 23

31 32
3

Figure 11: Water distribution network for the sensor placement application of L-shaped BONUS

8.2 Verification of the reweighting scheme

Before the problem solution and results are reported, the validity of using reweighting
scheme for this model (EPANET water network) is ascertained by performing test simulations. The
network was simulated for two different sets of samples and the results for one set were estimated
from the two sample sets using the reweighting scheme. These estimated results were then com-
pared with the actual simulation results. It is observed that the estimation accuracy decreases with
increasing number of uncertain variables. The effect of samples size is shown in figure 12. The
accuracy of estimation increases with increase in the sample size as the relative error between the
estimated and actual results goes down, as shown in figure 12.

8.3 Problem solution

The two stage problem posed above is solved using internal sampling strategy, where the
uncertain variables are sampled at the second stage problem solution providing statistical bounds
on the recourse function. For comparative studies, the problem is also solved by using deterministic



method after ignoring the uncertainties in flow demands.

In the standard L-shaped with sampling method, EPANET will need to be simulated for each
sample to get the flow pattern (giving the value of fijp), which is then used to solve the second stage
dual problem. This will be computationally very inconvenient, as it needs linking of the optimization
code with the EPANET simulation software and running the simulation for each sample.

The proposed algorithm instead simplifies the task by following the path shown in figure
5. So the EPANET is first simulated for a certain number of samples to get the distribution of vari-
ous flow patterns. The number of samples is decided by the desired accuracy. For this work, 100
samples were used. Then for every next iteration, reweighting scheme was used to estimate the
distribution of various flow patterns. This algorithm does not need to connect the optimization code
with the EPANET simulator as the first simulations can be done off-line and the results stored to be
used by the optimization code.

8.4 Results

Some of the important and representative results for the sensor placement problem are
given in table 4. The table reports the estimated and actual objective function and percentage risk
values for both the analysis. The estimated values are obtained from the particular problem solution
while the actual values are obtained through stochastic simulations. Since the stochastic analysis
incorporates stochastic simulation results in decision making, the estimated and actual values for
this method are same.

A comparison of results shows that the estimated values for the two methods are differ-
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ent, those for deterministic being lower than stochastic method. The actual objective function and
percentage risk values are however more important for comparing different solutions. These actual
values are higher for the deterministic solution than for the stochastic solution. These results point
to the fact that the results from deterministic analysis are clearly sub-optimal and consideration of
uncertainty is important in this problem. Without the consideration of uncertainty, the problem will be
deterministic not needing the proposed algorithm for its solution. But the importance of uncertainty
is manifested by the actual risk and objective function values in table 4 as well as the placement
locations of sensors (not shown in the representative table here). The stochastic problem would
have been computationally highly demanding had it been solved by the traditional methods. But the
proposed algorithm improves the performance and makes solution possible with considerable ease.
This is the important result from this case study.

9 Conclusion

The paper proposes a new algorithm to solve stochastic nonlinear programming problems.
SNLP problems being computationally demanding in most cases have found little application. The
proposed L-shaped BONUS algorithm overcomes the computational hurdle by using reweighting in
the traditional sampling based L-shaped algorithm structure. The reweighting scheme has been suc-
cessfully employed in a recently proposed BONUS algorithm, also to solve SNLP problems. The
results for the case study problems, a well known farmer’s problem, a process systems engineering
relevant chemical blending problem, and a sensor placement problem in a water distribution secu-
rity network show that the algorithm is a valuable tool in solving SNLP problems with considerably
reduced computational burden. In all the cases, reweighting approximation is shown not to com-
promise accuracy severely while greatly reducing the computation times. It was also shown for the
first two problems that HSS technique of sampling is better than MCS technique for this sampling
based algorithm. The sensor placement problem is particularly interesting as it is a large scale ap-
plication in an emerging area of water security which is a computationally expensive problem for the
traditional two stage algorithm. The proposed L-shaped BONUS algorithm thus holds considerable
promise and needs to be investigated further to identify additional properties and application areas.
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