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Introduction

This study examines the use of an interior point strategy to solve multilevel quadratic program-
ming problems that arise from including a closed-loop formulation of constrained model predictive control
(MPC) within quadratic programming problems. We motivate the formulation through its application
to the constraint back-off problem, although the strategy is applicable to several problem types.

Formulation

The difficulty of including constrained MPC within a dynamic optimization problem arises from
the need to solve a quadratic optimization problem at every time step. This results in a multi-level
problem since multiple optimization problems are embedded within a main optimization problem. A
sequential approach can be used, in which the optimization algorithm selects values for the decision
variables and the decision variables are then sent to a simulator. However, active constraints would
give rise to derivative discontinuities, and if the process has unstable modes then the simulation might
become unbounded and the optimizer might be unable to recover. An alternative is the simultaneous
approach, in which the dynamic equations of the process are transformed into algebraic equations that
are then included within the optimization problem. We have chosen to follow the latter approach.

In order to use the simultaneous approach, it is necessary to transform the quadratic problem
that the model predictive controller solves at each step into a set of constraints that can be included
within the original optimization problem. The approach used in this paper is to express the quadratic
programming sub-problems solved at each time step by the model predictive controller via their Karush-
Kuhn-Tucker (KKT) conditions and include these as constraints within the optimization problem.

The general form of a QP problem is:

min
x

1

2
xT Hx + gT x

Subject to

Ax = b

x ≥ 0

The KKT conditions of this QP problem can be written as:

Hx − AT ν + g − u = 0

Ax = b

uiνi = 0

(u, x) ≥ 0



From this it can be seen that the transformation of the MPC QP optimization problem into its
KKT optimality conditions results in a set of constraints that is linear except for the complementarity
constraints.

The inclusion of complementarity constraints within the main optimization problem leads to a
mathematical program with complementarity constraints (MPCC). In general, these cannot be solved
reliably with standard nonlinear programming solvers. The approach used in this paper is to use an interior
point implementation tailored to treat complementarity constraints in the original (primal) problem in
the same manner as those that arise from the KKT conditions, rather than treating them as general
nonlinear constraints. This is the strategy used by IPOPT-C, an algorithm and software implementation
developed by Raghunathan and Biegler (2003). An alternative strategy is to rewrite the complementarity
constraints using binary variables, resulting in an mixed integer problem.

Both approaches have their merits. If the complementarity constraints are transformed using
binary variables, then, if the remaining equations are linear and the objective is linear (or quadratic),
the resulting problem is a mixed integer linear (quadratic) programming problem. The benefit of this
formulation is that the optimum found by the solver is guaranteed, under mild conditions, to be the
global optimum. The disadvantage of this form is that in the worst case the solution time can grow
exponentially with problem size. On the other hand, we have no guarantee yet of global optimality for
the solution found by the MPCC approach, but it is the aim of this study to compare the performance
of this strategy to the MIP approach with regard to convergence to the global optimum and growth of
the solution time with increasing problem size.

The back-off problem

The motivating example for this formulation is the constraint back-off problem, although the
strategy is applicable to several problem types.

The steady-state economic optimum in process plants generally lies at the intersection of two
or more constraints. However, in order to avoid constraint violations in the presence of unmeasured
disturbances, it is necessary that the operating point be moved some distance from the constraints into
the feasible region. The calculation of this constraint back-off may be posed as a dynamic optimization
problem in which an economic criterion is optimized subject to the closed-loop trajectories satisfying
input and output constraints. This problem may be extended to integrated design and control in which
the decision space includes equipment design parameters, control structure and controller tuning.

The majority of studies in constraint back-off, as well as the more comprehensive integrated plant
and control system design problems, have restricted the choice of control system to linear controllers.
Here, the focus is on the constraint back-off problem with a quadratic objective using a constrained
model predictive controller. This results in a multilevel quadratic programming problem.

Case study: CSTR

The first case study is of a single-input single-output continuously stirred, isothermal tank
reactor, based on an example in Marlin (2000). The goal is to find an operating point that minimizes the
gap between the steady state concentration of A and a target concentration. The controlled variable is
the concentration of reactant A, the manipulated variable is the inlet feed flow rate and the disturbance
is a change in the inlet concentration.



The target setpoint was a concentration of A of 0.85 mol/m3. Path constraints were imposed to
restrict the concentration of reactant A between a lower limit of 0.5 and an upper limit of 0.85 mol/m3.
The inlet flow rate was constrained to remain between a lower limit of 0.05 and an upper limit of 0.90
m3/min

The tuning parameters used for the MPC controller can be found in Table 1.

Table 1: Tuning parameters for CSTR MPC.
Parameter Description Value
M Manipulated variable moves 2
P Prediction horizon 10
Q Controlled variable weight 1
R Manipulated variable weight 1

The time horizon for the problem was 40 time steps and the disturbance step change was 0.69
m3/min.

The case study was solved using both the MIQP and MPCC formulations. The optimal steady
state setpoint was found to be 0.692 and Figure 1 shows the trajectory obtained. To study the effect on
solution time as the problem size is increased, the value of M, and hence the number of complementarity
pairs and integer variables required, was increased. The solution times for both formulations are reported
in Table 2.
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Figure 1: Optimal trajectory obtained for the CSTR problem for a disturbance of 0.69 m3/min.

Using IPOPT-C to solve the quadratic programming problem with complementarity constraints
returned the same objective function value and trajectory as using CPLEX 9 to solve the MIQP problem
when CPLEX was able to return a solution.



Table 2: CPU Time needed to solve the CSTR example using CPLEX and IPOPT for increasing
M.

M Complementarities / CPLEX IPOPT-C
Integer Variables CPU Time (s) CPU Time (s)

2 162 0.1780 0.3250
3 244 0.6929 0.3779
4 326 > 4hrs 1.9697

Case study: FCCU

The next case study was a fluidized catalytic cracking unit (FCCU). The state-space model was
derived from the transfer function model identified by Ansari and Tade (2000).

The controlled variables are the oxygen concentration in the outlet flue gas from the regenerator
and the regenerator bed temperature. The manipulated variables are the inlet air flow rate to the
regenerator and the riser outlet temperature. The disturbance to the process was a change in the inlet
feed flow rate.

In addition, the oxygen concentration had to remain between 0.2 and 1.2 vol % and the re-
generator temperature had to remain between 705 and 735 oC. The inlet air flow rate was required to
remain between 140 and 155 ton/hr and the riser outlet temperature had to stay between 515 and 535
oC.

The tuning parameters for the MPC controller for the FCCU problem can be found in Table 3.

Table 3: Tuning parameters for FCCU MPC.
Parameter Description Value
M Manipulated variable moves 2
P Prediction horizon 10
QO2 O2 weight 1
Qregen Regenerator weight 1
Rair Air flow rate weight 0.1
Rriser Riser weight 1

The target for the oxygen concentration was 1.2 vol % and the regenerator bed temperature
target was 735 oC. The time horizon for the problem was 26 time steps and the disturbance was a step
change of -0.95 m3/hr to the inlet feed flow rate.

The case study was solved using both the MIQP and MPCC formulations. The optimal set-
points were 0.602 vol % and 734.999 oC for the oxygen concentration and regenerator bed temperature
respectively. The controlled and manipulated variable trajectories for the FCCU problem can be found
in Figures 2 and 3.

We also tested how the solution time increased as the problem size increased. To do this, the
FCCU problem was re-solved with the original time-step duration halved and then quartered so that the
number of integer variables and complementary pairs were doubled and quadrupled respectively. The
solution times when using the MIQP or MPCC formulations for the original and expanded problems can



be found in Table 4.
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Figure 2: Oxygen and air flow rate trajectories obtained for the FCCU problem for a disturbance
of -0.95 m3/hr.

Table 4: CPU Time needed to solve the FCCU example using CPLEX and IPOPT for increasing
time steps.

Time Steps Complementarities / CPLEX IPOPT-C
Integer Variables CPU Time (s) CPU Time (s)

26 216 3.9294 2.7386
52 424 406.605 8.079
104 840 > 4hrs 14.9327

In all cases where the MIQP was able to solve, IPOPT-C reported the same objective function
values and trajectories for the QP with complementarity constraints.

Conclusion

It was demonstrated that using an interior point approach to solve the multilevel quadratic
programming problem with complementarity constraints is an efficient alternative to using the MIQP
formulation, especially as the number of binary variables increases. In addition, in all cases where
the MIQP was able to solve, IPOPT-C reported the same objective function value. Since a global
optimal solution is guaranteed for the MIQP formulation, this provides anecdotal evidence that IPOPT-
C is a reliable and efficient method of finding the global optimum for a class of QP problems with
complementarity constraints.
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Figure 3: Regenerator and riser trajectories obtained for the FCCU problem for a disturbance of
-0.95 m3/hr.
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