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Abstract 
 
This paper addresses the impact of first level Reformulation Linearization Technique (RLT) and 
Reduced Reformulation Linearization Technique (RRLT) on Mixed Integer Linear Programs (MILP) 
with big-M constraints. Sherali and Adams (1994) propose a RLT that generates a hierarchy of 
relaxations spanning from the ordinary linear programming relaxation to the nth level convex hull 
relaxation of feasible convex set for mixed integer zero-one programs, where n is the number of binary 
variables. Later, Sherali et al. (2000) show that there exists a first level representation having nearly half 
the RLT constraints that yield the same lower bound. The motivation of this paper is based on the 
computational success of the first level RLT and RRLT on various classes of problems formulated as 
mixed integer 0-1 programs. In contrast to Sherali and Adams (1994), who multiply all constraints with 
all binaries present in a formulation, we multiply only Big-M constraints with binaries present within 
these constraints.  We solve a variety of problems such as flow-shop, job-shop and strip-packing to 
illustrate the performance of the modified RLT and RRLT.   
 
Introduction 

MILP formulations find their application in a wide variety of chemical as well as other 
engineering problems. While the application of MILP is vast, the challenges for the researchers to 
provide a faster solution still continue to exist. Modeling plays a crucial role on the solution efficiency 
of any problem. Several modeling approaches (event-based, sequence-based, slot-based etc.) do exist in 
the literature for MILP formulations. For a given problem, different approaches can have different 
performance efficiencies on the problem solution. However, relaxed MILP value is definitely a good 
indicator to clearly show which approach yields a tight formulation (i.e. feasible region is small). 

 
In an attempt to tighten the MILP relaxations, several researchers have worked on various 

relaxation techniques. Balas (1993), Sherali and Adams (1994) and Lovasz and Schrijver (1991) 
developed hierarchies of relaxation for MILP formulations. Balas (1983) showed how a hierarchy of 
relaxations spanning from the linear programming relaxation to convex hull relaxation could be 
constructed in an inductive fashion for MILPs. Sherali and Adams (1994) proposed a RLT that generates 
a hierarchy of relaxations for 0-1 mixed integer problems (MIP). The proposed technique first converts 
the problem into a non-linear, polynomial mixed-integer zero-one problem by multiplying the 
constraints with some suitable d-degree, d = {0,1,….,n}, polynomial factors involving the n binary 
variables. Then, it linearizes the resulting nonlinear program through suitable redefinitions of variables. 
As d varies from 0 to n, we obtain a hierarchy of relaxations spanning from the ordinary linear 
programming relaxation to the convex hull of feasible solutions. The facets of the convex hull of 
feasible solutions in terms of the original problem variables are obtained through standard projection 
operation. Lovasz and Schrijver (1991) generated yet another hierarchy of n relaxations by transforming 



the representations in the original n variables at each stage to a suitable representation in an n2 variable 
space.  

 
Grossmann and Lee (2003) showed that the feasible region of the relaxation resulting from the 

convex hull reformulation is always as tight as or tighter than that of the big-M reformulation. The 
tightness of the relaxed feasible region, which is reflected in the lower bound (for minimization 
problem) is an important criterion when solving the original MILP, as tighter relaxed feasible regions 
reduce the search space of the solution algorithm. However, the representation of the convex hull 
requires the introduction of new disaggregated variables and additional constraints that can greatly 
increase the size of the problem and thus increase in computation time. In order to overcome the 
aforementioned problem, recently Sawaya and Grossmann (2004) proposed a cutting plane approach 
which is based on converting the generalized disjunctive program (GDP) into an equivalent big-M 
reformulation which is successively strengthened by cuts generated from an LP or QP separation 
problem. 

 
In this paper, we first describe the Big-M relaxation of a disjunction involving convex linear or 

non-linear inequalities. Based on the work of Sherali and Adams, we examine the first-level 
representation generated by the RLT for Big-M constraints in Big-M relaxation for mixed integer 0-1 
programs. The first-level RLT relaxation is constructed by multiplying the constraints with the bound 
factors (a binary and its complement) and then linearizing the problem by substituting a new variable for 
each non-linear product term thus produced. While Sherali and Adams (1994) multiply all constraints 
with all binaries present in the model, we multiply only the Big-M constraints with the binaries present 
within these constraints.  In the following, we discuss the first level representation of RLT and RRLT 
for MILP formulations and then we demonstrate the technique on different problems. Finally, we 
discuss the computational impact of these techniques on a variety of problem instances. 
  
First Level Representation of RLT and RRLT for MILPs 

Consider the following MILP problem in the form of disjunctions (Sawaya and Grossmann, 2005): 
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Ω(Y) = True   
x∈ nR+ , yik ∈{True, False} ,ki D k SD∈ ∈     (A) 
where SD is the set of disjunctions and ik ikA x a≤ are linear inequalities representing the constraints of 
the problem, Yik are boolean variables to represent discrete decisions, ikγ are fixed charges and ck 
∈ nR+ are continuous functions. A disjunction k∈SD is composed of various disjuncts i∈Dk, each 
containing a set of linear equations and/or inequalities representing the constraints of this problem, 
connected together by the logical OR operator (V) that ensures that only one disjunct is true. There are 
many ways to reformulate the linear GDP problem (LGDP) to a Mixed Integer Program (MIP). The two 
most common alternatives termed as big-M reformulation (BMR) and convex hull reformulation (CHR).  



Big-M Reformulation: 
The LGDP can be reformulated as a MIP by replacing the Boolean variables Yjk by binary variables yjk 
and using Big-M constraints. The logic constraints Ω(Y) are converted into linear inequalities (Williams, 
1985), which leads to following reformulation. 
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where yik are 0-1 variables corresponding to Boolean variables Yik. 
Mik are big-M parameters and the tightest value of Mik can be calculated from  
Mik = max {Aik(x) –aik / xl ≤ x ≤ xu}.  
The logic constraints Ω(Y) are written in the form of conjunctive normal form from which the 
inequalities Qy ≤ q are derived. 

                                                                                                                                                                              

Convex Hull Reformulation: 
In order to obtain the CHR , problem LGDP is transferred into an MIP by replacing the Boolean 
variables Yik by binary variables yik and disaggregating the continuous variables x∈ nR+  into new 
variables v∈ nR+ . Using the convex hull constraints for each disjunction (Balas 1998; Raman and 
Grossmann, 1994), this leads to the following reformulation (Raman and Grossmann, 1994): 
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where yik are relaxed 0-1 variables and vi are disaggregated variables for continuous variables x. Eq. (B) 
defines a convex set in (x,v,y) space provided the inequalities Aik(x) ≤ aik , i∈Dk are convex and 



bounded. The convex hull in equation (B) can be provided to be tighter than or at least as tight as the 
Big-M relaxation. 
 

The new variables v∈ nR  in CHR are the disaggregated variables, while the parameters U serve 
as their upper bounds and are chosen so as to match the upper bounds on the continuous variables x∈ nR . 
The advantage of the convex hull formulation is that it provides a tighter lower bound, which results in 
the reduction of search effort for the branch and bound algorithm. This reduction in feasible region is 
very expensive due to the tremendous increase in the number of variables and constraints in the original 
problem. The big-M formulation, on the other hand, is more convenient to use since the problem size is 
smaller compared to the convex hull formulation. The poorer lower bound of big-M, however, can 
demand more CPU time than the convex hull. Thus, there exists a clear trade-off between the tighter 
lower bound and the problem size. 

 
RLT for Big-M Reformulation (RLT-BMR): 

Sherali and Adams(1994) described the RLT process for constructing a relaxation Xd of the feasible 
region X defined in (A) corresponding to any level d∈{0,1,….,n}, where n being the number of binary 
variables. For d = 0, the relaxation X0 is simply the LP relaxation obtained by deleting the integrality 
restrictions on the binary variables. To construct the relaxation for any level d∈{1,….,n}, they consider 
the bound factors yik≥ 0 and (1-yik) ≥ 0 for ,ki D k SD∈ ∈ and compose the bound factors products of 
degree d by selecting some d distinct variables from the set yik , ,ki D k SD∈ ∈  and by using either the 
bound factor yik or (1-yik) for each selected variable in a product of these terms. Then they linearize the 
resulting relaxation by substituting the appropriate variables say w and v. Denote the projection of Xd 
onto space of the original variables (x, yik) by 
Xp0  ≡ X0 ⊇ Xp1 ⊇ Xp2 ⊇…….⊇ Xpn ≡ conv(X) 

where Xp0  ≡ X0 (for d=0) denoted the ordinary linear programming relaxation and conv(X) denotes the 

convex hull of X.   

In this section we consider the first level, d=1, RLT for BMR by multiplying the disjunctive 
constraints of big-M relaxation with the binaries yik present in the particular constraint and linearizing 
the resulting problem by replacing yik

2 by yik and pik = xyik , i∈Dk , k∈SD. We need to multiply only the 
big-M constraints with the binaries present within the constraints else there will be increase in lot of 
constraints and variables which may increase the computation time. 

We obtain the first level RLT reformulation for big-M given below: 
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x∈ nR+  , yik ∈{0,1}  ,ki D k SD∈ ∈   
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In contrast to Sherali and Adams (1994), we multiply only with the binary present within the constraint, 
thus we do not have any variable defining the product of two different binaries. 
 
Theorem: Let RLT-BMR be feasible and define RLT-BMR-1 as the formulation in which the original 
big-M constraints (1) have been added. Then there exists a dual optimal solution to RLT-BMR-1 such 
that for each ki D , k SD∈ ∈ , the dual variable associated with at least one of the (1a) or (1b) for each 

ki D , k SD∈ ∈  is zero. Thus we can delete such constraints having zero dual multiplier from RLT-
BMR-1 which results in reduced first level RLT big-M relaxation having the same lower bound as RLT-
BMR. 
 
Remark: Theorem asserts that if we add the original big-M constraints (1) to RLT-BMR, then we can 
delete some of the constraints from (1a) and (1b), which have zero dual multipliers and yet retain the 
same lower bound of RLT-BMR. For the case of single binary the reduced first level RLT-BMR is of 
the same size as of RLT-BMR and yields the convex hull of feasible solution to MIP. 
 

Towards this end, we find that whenever the coefficient of binary yik in the constraint (1) is 
positive, then we should try retaining (1b) and we should retain (1a), whenever coefficient of binary is 
negative or zero.  
 

RRLT for Big-M Reformulation (RRLT-BMR):  

We construct RRLT-BMR-1 by appropriately deleting one of the each pair of the constraints (1a) and 
(1b) ∀ ki D , k SD∈ ∈ and adding the original constraints (1) ∀ ki D , k SD∈ ∈ . 
 (RRLT-BMR-1) 
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Remark: The optimal objective value for RRLT-BMR-1 is same as of RLT-BMR-1.  

 



Now, we demonstrate the procedures to formulate the first level RLT and RRLT technique on 
big-M reformulations of flow-shop problems. The same procedures apply to strip-packing and job-shop 
problems. 
 

Flow shop problem (FS): 

In a flow shop problem, there are i , i′ = 1, 2, … , I  products to be processed on  j = 1, 2, …, J units 
placed serially according to the recipe that is identical for all  I products. A flow shop with I products 
and J units with only one unit in each stage is characterized as [I ×J] flow shop. We consider a flow 
shop with No intermediate storage(NIS) configuration in which a product up on completion can wait in a 
unit for an unlimited period of time (Unlimited storage(UW) policy) until the subsequent unit becomes 
free. The flow shop model without setup considerations and NIS policy is given as follows:  
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where Cij is the completion time, tij is the processing time of a product i in the unit j, ms is the makespan 
to be minimized.  Eq. (2) ensures that the completion time of a product in a unit exceeds its completion 
time in the previous unit and its processing time in the unit under consideration. Each clause in 
disjunction (3) forms a pair of disjunctive constraints which govern the NIS Storage policy. The 
disjunctive constraints behave in such a way that if one binds ensuring the precedence relation, the other 
relaxes with the help of a large penalty H. Second inequality in each clause forms another pair of 
disjunctive constraints which ensure the product transitions in the first unit. It is to be noted that it is 
written for only the first unit as the product transitions in all other units are handled by first inequality in 
each clause.  
 

BMR for FS: 
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CHR for FS: 
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RLT for BMR of FS: 
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RRLT for BMR of FS: 
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As discussed above we remove the block of constraints obtained by multiplying (1-Yik) for RRLT. 

Examples 

We solved each of the three problems (flow-shop, zero-wait job-shop and strip-packing) using different 
data sets. From the computational results, we observe a significant reduction in the solution time for 
most of the problems. For strip-packing and job-shop problems, RRLT performed better than RLT. On 
the other hand, RLT technique consistently improved the solution time for all the instances of flow-shop 
problem significantly (almost 50% reduction). 
 
CONCLUSION 
In this paper, we proposed a modified first level representation of RLT and RRLT for MILP 
formulations with big-M constraints. From the rigorous computational tests on various problems, we 
observed that the techniques could significantly impact the solution times up to 50%. It is clear form the 
above results that the first level RLT and RRLT improve the computational performance of MILP 
formulations. 
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