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Introduction 

Open-channel capillary flows where the free surface is supported 
by solid structures such as helices or regular polygonal arrays of 
parallel wires are possible at low Bond number [1].  The term 
“supported capillary pipe” will sometimes be used to refer to these 
open fluid channels.  A photograph of a static helical supported 
capillary pipe is seen in Fig. 4(a).  Low Bond number (Bo=gD2Δρ/σ) can 
be achieved in microgravity (g~0), at small scale in microfluidic 
applications (D~0), and in Plateau tank experiments (Δρ∼0).  Supported 
capillary pipes may have applications to liquid-gas contacting in 
situations for which gravity is ineffective at creating the 
differential flow between a liquid and gas which is necessary to 
enhance transport rates.  Applications in microgravity or at 
microscale can be imagined for chemical or biochemical processing and 
for heat transfer with phase change.  Scaled down liquid-gas 
contactors may be useful for intensified processes such as lab-on-a-
chip, high heat flux cooling of computer chips and for compact fuel 
reforming units to be used in fuel cell powered vehicles.  To 
intensify heat or mass transfer operations in two phase systems one 
wishes to increase the interfacial area and provide good mixing near 
the free surface.  The capillary structures discussed here would 
allow for improved surface area per volume compared to conventional 
processing equipment such as packed beds or structured packings.  An 
advantage of the types of flow channels considered in this research 
is that they can be arranged in a close packed array to fill a three 
dimensional space.  Scaling arguments suggest that velocity gradients 
near the free surface will be enhanced when the capillary flow 
channels are scaled down thus improving mass transfer rates.  
 

The static stability of liquid ridges in zero gravity in which 
the free surface is a section of a cylinder have been studied for the 
case of pinned and free contact lines [2-4].  Langbein [3] studied 
the case for which the liquid occupied an interior or exterior 
corner, Roy and Schwartz [4] considered the case of a solid 
cylindrical substrate, and Brown and Scriven [2] looked at liquid in 
a slot where the contact line is pinned at the exterior slot corners.  
The case of liquid in a slot with pinned contact lines is closely 
related to the stability of supported capillary pipes in polygonal 
wire arrays. 
 

The kinetics of initial meniscus penetration into an open 
channel has been shown to follow the classical Washburn [5] kinetics.  
This includes flow into a v-shaped groove [6-8], capillary flow in 
fiber matrices [9] and yarns [10], and flow along the corners of a 



square tube [11].  The Washburn equation predicts that the meniscus 
penetration distance increases with the square-root of time.  Rye et 
al. [7] noticed a deviation from Washburn kinetics at short times for 
molten solder flow in a v-groove which they attributed to a dynamic 
contact angle effect.  Dong and Chatzis [11] also showed that the 

imbibition rate should scale as σD /μ where D is a lateral dimension, 
σ the surface tension and μ the viscosity.  The same scaling is 
predicted for the capillary structures described here (see Eq. 1). 
 

Open channel flows between parallel wires, between a flat plate 
and a wire, or between two flat plates were studied by Jones and 
Melcher [12].  These relatively large scale “wall-less” pipes were 
supported by dielectrophoretic forces as the wires and plates acted 
as electrodes. 
 

The development of open channel flows for microfluidic 
applications is a current area of broad interest [13-18].  The 
microstructures which have been explored include wetting strips on a 
hydrophobic substrate [13,15]  and microgrooves 400 nm to 3 μm wide 
[16].  Another related development in microfluidics is the work on 
textured surfaces with hydrophobic coatings to produce 
ultrahydrophobic surfaces for enhanced flow in microchannels [18].  
The dimension of applied textures was typically on the order of 30 μm 
and the microchannels were millimeter scale in width and 76 to 254 μm 
deep. A study by Gogte et al. [19] on superhydrophobic surfaces 
included a numerical simulation of flow in a hypothetical grooved 
pipe with different numbers of grooves.  The flow boundary conditions 
were alternating between no-slip and free-surface conditions.  This 
situation is nearly identical to the polygonal array of wires case 
described here. 
 

An example of applying microchannels to the intensification of 
mass transfer operations is work by Zanfir et al. [20] in which CO2 
absorption was studied in a falling film microstructured reactor.  A 
plate with 64 microchannels of 300 μm width and 100 μm depth was used.  
The surface area per volume of this type of reactor is approximately 
an order of magnitude larger than for a conventional falling film 
contactor. 
 
Observations of the Phenomena 

A hexagonal array of parallel wires (Fig. 1) can support a 
continuous liquid channel at low Bond number.  Figure 2 shows an 
aqueous solution of 68.1 wt% methanol being injected into a hexagonal 
array of steel rods which are immersed in a mineral oil bath of the 
same density as the aqueous solution.  The rod diameter was 0.050 in. 
and the hexagon radius (to the center of the wires) is 0.125 in.  A 
helical spring can also support a continuous liquid channel with the 



advantage that the stability of the system can be adjusted by simply 
changing the pitch of the spring [1].  Figure 4(a) shows an example 
of a continuous liquid channel supported in a 1/4 in. diameter 
spring.  The field of view in Fig. 4 shows only a small portion of 
the 10 in. long liquid channel.  In this case the liquid in the 
spring is 2-fluorotoluene and the bath is pure water.  The bath is 
held at 26.5 °C at which temperature the two liquids have the same 
density.  Figure 4 also illustrates the observation that the 
capillary surface is stable over a limited range of volumes and 
therefore pressures.  It has also been observed that a continuous 
water channel can be established in a 1/8 in. diameter horizontal 
spring surrounded by air provided the pitch of the spring is small 
enough. 
 
Hydrostatic Stability 

The static stabililty of supported capillary pipes at zero Bond 
number is expected to depend on the contact angle, several 
dimensionless geometric factors characterizing the support, and the 
non dimensional volume per unit length of liquid in the structure.  
The geometric factors include the number of wires, the ratio Rw/Rp , 
where Rw is the wire radius and Rp is the radius of the spring or 
polygonal array (to the center of the wire) and, in the case of 
helices, the dimensionless pitch (L/Rp).  Rp will also be referred to 
as the radius of the supported capillary pipe.  The static stability 
is predicted by computing the Laplace pressure in an infinite length 

 
Figure 1:  Axial view of hexagonal wire support and bridged liquid 
surfaces.  The arrow indicates the camera viewpoint for the images in 
Fig. 2. 
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Figure 2:  Injection of aqueous phase into hexagonal array support 
structure made up of 0.05 inch diameter steel rods.  The polygon 
diameter is around 0.25 inches and is over 2 inches long. 
 

 
 
Figure 3:  Plateau-tank apparatus for studying stability limits in 
helical structures of various pitch.  Once a continuous liquid 
channel is established between the two ends, the volume per unit 
length can be varied by injection or withdrawal of liquid using the 
syringe pump. 
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Figure 4:  Shows 2-fluorotoluene in a portion of a 1/4 in. diameter, 
10 inch long helical spring immersed in a water bath of equal 
density.  In (a) the system is near the low-volume (low-pressure) 
stability limit.  After withdrawing slightly more liquid the 
interface broke and the liquid retracted completely out of the field 
of view.  Translating the camera to the side (b) shows the relaxed 
shape of the interface.  In (c) the system in near a high-volume 
(high-pressure) stability limit.  After injecting slightly more 
liquid (d) shows the region where liquid engulfed the wires to form a 
blowout. 
 
 



 
structure as a function of the non dimensional volume.  Turning 
points in the pressure indicate loss of stability [1,21].  Another 
type of loss of stability is when contact lines meet such that the 
free surface either engulfs the wire or detaches from the wire.  The 
stability analysis involves computing equilibrium surface shapes and 
then identifying changes in stability associated with pressure maxima 
(upper limit) and minima (lower limit).  The case of a polygonal wire 
array support is particularly easy to analyze.  The free surfaces are 
simply arcs of a circle, thus for a given ratio Rw/Rp and contact 
angle, an analytical formula gives the dimensionless volume per unit 
length and dimensionless Laplace pressure.  Plotting pressure versus 
volume shows that an upper and lower pressure extremum exists for 
some geometries (Fig. 5).  In other cases the contact lines meet 
either on the outside of the wire or inside of the wire before a 
pressure extremum is reached. 
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Figure 5:  The dimensionless Laplace pressure versus the 
dimensionless volume per length in a hexagonal wire array structure 
with a ratio of wire radius to polygon radius of 0.2.  Curves are 
shown for three contact angles, 60, 90 and 120 degrees.  Stable 
pressures and volumes lie between the upper and lower pressure 
extrema.  In some cases the curve is truncated prior to a pressure 
turning point because the contact lines meet. 
 

For an infinitely long static liquid column in a helical 
structure, the interface shape is helicosymmetric.  The shape of the 
interface is therefore completely characterized by the shape in a 
lateral section which can be translated and rotated to produce the 
three dimensional surface shape.  This shape can be computed from a 
special helicosymmetric form of the Young-Laplace equation [1] to 
determine the Laplace pressure in the structure.  Changing the volume 
per unit length of liquid in the structure in general changes the 
Laplace pressure.  A series of equilibrium shapes are computed 



mapping out an equilibrium branch in pressure-volume space.  Extreme 
values in the pressure represent changes in stability.  Results for 
the stability limits from equilibrium branches can be compiled into a 
stability envelope where the stability boundaries are mapped out in 
terms of volume and the non dimensional pitch, L, of the helix.  For 
a given pitch, there is an upper and lower stable volume unless the 
pitch is beyond a critical value for which no stable solutions exist.  
For a very tight pitch (L going to zero) the range of stable volumes 
shrinks toward zero, however, the corresponding range of stable 
pressures diverges.  Basically in this limit the collapsed spring 
becomes a solid-walled pipe. 
 

Static stability has been demonstrated for a wide range of 
volumes in Plateau tank studies with helical supports.  A schematic 
of the Plateau tank appartus is shown in Fig. 3.  The fluid channel 
is easily established by simply injecting liquid from one or both 
ends of the structure until a continuous channel bridges the two 
injection ports.  After a continuous channel is established the 
volume per unit length in the structure can be carefully adjusted 
using the syringe pump in order to measure stability limits.  Figure 
4(a) shows a structure near a minimum volume stability limit and Fig. 
4(b) shows the meniscus shape after breakage, while Fig. 4(c) shows a 
structure near a maximum volume stability limit and Fig. 4(d) shows 
the subsequent wire support engulfment.  The outer diameter of the 
spring in these experiments was 0.25 in. and the spring length was 10 
inches.  The liquid in the support was 2-fluorotoluene and the bath 
liquid was pure water held at 26.5 °C, the isodensity temperature for 
the 2-fluorotoluene/water system.  The range of pressures which can 
be sustained in the supported capillary pipe for a given support 
geometry are dictated by these low and high volume limits.  This then 
also dictates how much pressure driving force can be applied between 
the two ends of the structure to drive a flow.  
 
Flow Characteristics 

To be useful in potential applications, it must be possible to 
establish the fluid channel by simply injecting liquid into one end 
of the support structure such that the meniscus pentrates the 
structure over large distances.  This requires that the supported 
capillary structure be stable over a range of pressures.  To drive 
the penetration flow, the pressure at the entrance of the structure 
must be maintained above the pressure in the liquid at the advancing 
meniscus.  It is expected that a form of the Washburn-Lucas equation 
will apply here, where the penetration distance, l, goes as time to 
the one-half power. 
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Here RP is the radius of the capillary pipe, σ is surface tension, μ 
is kinematic viscosity, A a non dimensional cross sectional area of 
liquid, and ΔP the dimensionless pressure driving force.  In the 
above equation, Q is the non dimensional flow rate per unit pressure 
gradient, which is determined from a finite element solution to 
Poisson’s equation for the given geometry with no slip boundary 
conditions on the wires and and zero stress conditions at the free 
surfaces.  The pressure difference between the entrance and the 
advancing meniscus, ΔP, is limited by stability issues.  The pressure 
at the entrance is limited by the upper pressure stability limit.  
The pressure at the advancing meniscus depends on the contact angle 
the liquid makes with the wire.  The program Surface Evolver has been 
used to compute the shapes and Laplace pressure in finite length 
liquid slugs in hexagonal arrays and helical structures as shown in 
Fig. 6.  Figure 6 (a)-(c) shows the change in meniscus shape going 
from a wetting (a) to a non wetting (c) liquid.  The Laplace pressure 
in such a slug is expected to approach a constant value as the slug 
length increases.  Ignoring dynamic effects on the meniscus, this 
Laplace pressure should approximate the advancing meniscus pressure.  
The quantity Q/A was computed for Poiseuille flow in several 
hexagonal wire array structures using the finite element method.  A 
computed flow profile is shown in Fig. 7.  Notice that the flow 
profile is parabolic near the center as in pipe flow and the free 
surface velocity is significantly less than the maximum bulk 
velocity.  
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Figure 6:  Surface Evolver results for truncated capillary pipes in a 
hexagonal wire array (a)-(c) with Rw/Rp= 0.1875 and for a single wire 
helix, (d).  (a) θc= 20°, (b) θc= 70° (c) θc= 120° and (d) θc= 90°. 

 
Figure 7:  Velocity flow profile for cross section of hexagonal array 
capillary pipe.  The no-slip condition is applied to the wires while 
a zero tangential stress condition is applied to the free surfaces. 
 

Once a continuous fluid channel has been established the flow rate 
through the structure can be increased by simultaneously withdrawing 
liquid from one end and injecting it at the other at the same rate.  
The flow rate through the structure is then given by 

 

    

dV
dt

= Q σ
μ

Rp
3 ΔPL

LT

           (2) 

 
where   ΔPL is the non dimensional pressure difference between the ends 

of the structure and LT the total length.  The maximum value of  ΔPL is 
dictated by the high and low volume limits mentioned above.  A 
continuous flow loop has been demonstrated using a single pump to 



simultaneously suck liquid from one end of the structure and reinject 
it at the other end (Fig. 10).  This experiment was done for a 1/8 
inch diameter spring in air with a tight pitch.  The wire diameter 
was 0.016 in. and the axial spacing between coils was approximately 
equal to the wire diameter.  A very stable flow could be established 
over a distance of approximately 11 inches.  One remarkable 
characteristic of this flow is that when an air bubble is pumped into 
the structure, the liquid channel becomes disconnected but this gap 
translates down the structure since on one side of the break liquid 
is still being pushed in and the on the other side liquid is being 
withdrawn at the same rate.  The “bubble” appears to flow through the 
structure as if it were in a closed pipe. 
 

The dynamics of the initial penetration of the meniscus into the 
structure at a fixed entrance pressure has also been measured 
experimentally.  A large liquid reservoir with small head pressure 
was connected by a short length of tubing to a horizontal 1/8 inch 
diameter spring and liquid was allow to flow into the spring support 
(Fig. 8).  The advancing meniscus was tracked with a video camera on 
a horizontal slide (Fig. 9(a)).  Using image analysis, the front 
position as a function of time was measured and shown to be 
consistent with Washburn kinetics (Fig. 9(b)).  The Washburn equation 
had to be modified to account for the flow-rate dependent pressure 
drop in the short section of tubing connecting the reservoir to the 
helical structure.  When the meniscus reached the far end of the 
structure a continuous flow could be established by just allowing the 
liquid to drip into a beaker.  A flow rate of about 10 mL per minute 
could be established. 

 
Figure 8:  Schematic of apparatus for penetration studies of a small 
diameter spring in air. 
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Figure 9:  (a) Meniscus advancing from right to left in a horizontal 
spring in air with a diameter of around 1/8 inch.  (b)  Corresponding 
measurements of meniscus position versus time together with a fit of 
a modified Washburn kinetics model. 
 
Demonstration of Mass-Transfer 

An experiment was performed to absorb CO2 with 1 M NaOH flowing 
in a horizontal 1/8 inch diameter spring with tight pitch.  The 
overall spring length was 10.7 in., the wire diameter was 0.0162 in., 
the pitch was 0.0288 in. giving a space between wires of 0.0126 in.  
The flow rate in the structure was 1.77 mL/min.  The spring was 
enclosed in a plexiglas tube with sealed ends containing inlet and 
outlet ports for liquid and gas (see Fig. 10).  The gas phase 
consisted of pure CO2 and a bubble meter was used to measure the rate 
of uptake of CO2 as a function of time.  Figure 11 shows the 
absorption rate versus time.  The structure was initially filled with 
1 M NaOH and then allowed to sit for about 30 minutes while the 
uptake rate was continuously measured.  As can be seen the absorption 
rate decays as the stagnant surface is saturated.  At around 1927 
seconds the pump was activated to start the flow.  The absorption 
rate immediately began to rise up to a level of around 0.14 mL/sec 
and then tapered off steadily. The absorption rise time was about 73 
seconds which corresponds almost exactly to the estimated residence 
time of liquid in the structure.  The slow reduction in absorption 
rate with pumping was due to exhausting the NaOH solution.  The flow 
loop contained a 100 mL reservoir. 
 



 
Figure 10:  Apparatus for measurement of absorption of pure CO2 by 
sodium hydroxide solution in a 1/8 in. OD spring.  Absorption could 
be measured for static or flowing liquid conditions. 
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Figure 11:  CO2 absorption by 1 M NaOH solution in a 1/8 inch diameter 
spring, 10.7 inches long.  NaOH solution was initially injected to 
form a continuous channel and then was allowed to sit stationary to 
observe the decay of absorption rate in a stagnant liquid column.  At 
1927 s the flow was started at 1.77 mL per minute.  The absorption 
rise time was about 73 seconds which corresponds almost exactly to 
the estimated residence time of liquid in the structure.  
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