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1. Introduction 
Scheduling of crude oil is an important and complex routine task in a refinery. It involves crude oil 
unloading, tank allocation, storage and blending of different crudes, and CDU charging. Optimal 
crude oil scheduling can increase profits by using cheaper crudes, minimizing crude changeovers, 
avoiding ship demurrage, and managing crude inventory optimally. However, mathematical 
modeling of the blending of different crudes in storage tanks results in bilinear terms, which turns the 
whole problem into a difficult, nonconvex, mixed integer nonlinear program (MINLP). 

 
So far, several efforts (Lee et al., 1996; Li et al., 2002; Moro and Pinto, 2004; and Reddy et 

al., 2004a,b) in the literature have attempted to solve this MINLP problem. Lee et al. (1996) used 
reformulation linearization technology (RLT) to turn bilinear equations into linear forms. However, 
this linearization approximation leads to composition discrepancy (the amounts of individual crudes 
delivered from a tank to CDU are not proportional to the crude composition in the tank) as shown by 
Li et al. (2002) and Reddy et al. (2004b). Discretization procedure of Moro and Pinto (2004) leads to 
discrete values for flow rates and increases problem size to an extent that makes it almost impossible 
to solve reasonably sized problems. General purpose solver such as DICOPT and the method of Li et 
al. (2002) require solving one MILP and one NLP iteratively. Reddy et al. (2004a,b) solve a series of 
MILPs to avoid solving NLP. However, we find that DICOPT as well as the algorithms of Li et al. 
(2002) and Reddy et al. (2004a, b) fail to get feasible schedules in several examples, although 
feasible solutions do exist. Moreover, these algorithms still need large solution times for solving 
large, practical problems.  
 

Therefore, no reliable, robust, and efficient algorithm exists in the literature for this real, 
practical, and very useful problem. Moreover, only one crude property is considered in the literature. 
The flow rate change to any CDU is not limited either. In this paper, we will first identify fifteen 
crude properties that are critical to crude distillation and downstream processing. We enhance the 
practical utility of Reddy et al. (2004b)’s MINLP formulation by adding appropriate linear blending 
correlations for these properties. Next, we will propose a robust algorithm to solve this MINLP 
problem. To further increase solution speed and improve optimality, we will develop a partial 
relaxation strategy in which we relax the integrality restrictions on the binary variables of limited use. 
In addition, we will revise Reddy et al. (2004b)’s formulation to ensure practically realistic schedules 
with limited flow rate changes to the CDUs. 
 
2. Problem Definition 
The problem we studied is taken from Reddy et al. (2004b) with some modifications. Figure 1 shows 
the schematic configuration of crude oil scheduling in a typical marine access refinery. The detailed 
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description can be referred to Reddy et al. (2004b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Mathematical Formulation 
In this paper we use the formulation developed by Reddy et al. (2004b). The details about their 
formulation including the definition of variables and parameters can be found in their paper (Reddy 
et al., 2004b). 
 
4. Flow rate change limitation to any CDU 
The flow rate of any CDU cannot change too much between two adjacent periods in order to stabilize 
the CDU operation. We regulate that the flow rate change of any CDU in the next period should be 
within some acceptable fraction of that in the previous period as follows, 

( 1) 1u t utFU fkk FU+ ≥ ⋅     (1a) 

( 1) 2u t utFU fkk FU+ ≤ ⋅     (1b) 

fkk1 and fkk2 are parameters. fkk1 can be the value within 75%~85% while fkk2 can be the 
value within 1.15%~1.25%. 
 
5. Infeasibility of Reddy et al. (2004b)’s algorithm 
As mentioned before, Reddy et al. (2004b)’s algorithm may lead to infeasibility in some examples. 
Now we analyze their algorithm in detail. In their algorithm, they use the following two constraints 
(2a) and (2b) to correct composition discrepancy. If fict is known, then the whole problem turns to 
MILP problem not MINLP problem. They also observe that during some blocks of contiguous 

iuct ict iutFCTU f FTU= ⋅     (2a) 

ict ict itVCT f V= ⋅                                                         (2b) 
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Figure 1 Schematic of oil unloading and processing



periods, the composition in each tank does not change. For such a block, if fict is known, then the 
problem is also a MILP problem. Thus, the whole periods are divided into two blocks for each tank. 
One for which the tank composition is known, and the other for which the tank composition is not. 
They also notice that the composition in each tank changes only when a tank receives crudes. 
Otherwise, it does not change. Moreover, the status of all configurations in a refinery is also known 
in the beginning. Therefore, they first identify the first possible period for each tank to receive crudes. 
From the first period to this first possible period of receiving crudes, the composition in each tank is 
constant and known, denoted as the initial block of periods. They use constraints (2a) and (2b) in this 
initial block and drop (2a) and (2b) in the remaining periods. The whole problem is a MILP problem. 
A solution can be obtained with no composition discrepancy in this initial block. After solving, they 
fix all variables in this initial block. Then they try to identify the second possible period for each tank 
to receive crudes and the second block for each tank. They continue with this strategy until a near 
optimal solution is obtained. Therefore the reason for infeasibility of their algorithm is the 
progressive fixing of binary variables. 
 
6. Robust Algorithm 
As discussed above, once the infeasibility occurs in the nth period, it means that the combination of 
binary variables before the nth period is probably infeasible. However, their algorithm lacks a 
mechanism to retract from these infeasible combinations. If we could eliminate this combination 
somehow, we could obtain a feasible solution. Based on this idea, we propose an integer cut strategy 
to remove this infeasible combination of binary variables. This allows us to return back to solve it 
again until the solver can give a feasible solution. 
 
6.1 Integer Cut Constraint 
Based on the above discussion, we should remove the infeasible combination of binary variables 
before period n once Reddy et al. (2004b)’s algorithm cannot find a feasible solution in period n. The 
following lemma gives the integer cut constraint. 
Lemma 1 Consider a binary variable solution yj =1(j∈NZ) and yj=0 (j∈Z) of n binary variables, yj 
(j=1, 2, …, n), the following constraint 

| | 1j j
j NZ j Z

y y NZ
∈ ∈

− ≤ −∑ ∑     

eliminates this binary solution. 
Where:  
|NZ| is the cardinality of set NZ, while |Z| is the cardinality of set Z. 

Based on Lemma 1, we can remove the infeasible combination of binary variables. 
 
6.2 Time Representation 
When infeasibility of Reddy et al. (2004b)’s algorithm occurs in period n, the combination of binary 
variables before period n is infeasible. There are many cases for this infeasible combination of binary 
variables. For example, the combination of binary variables in period (n-1) may be infeasible. Or the 
combination of binary variables in period 2 may be infeasible. Or the combination of binary 
variables in several periods before period n is infeasible. In other words, we do not know which 
combination of binary variables is infeasible. One way is to do integer cut reversely based on Reddy 
et al. (2004b)’s algorithm. This method is effective when infeasible combination of integers is near to 
period n. However this method will do many integer cuts when infeasible combination of binary 



variables happens in earlier periods. Another way is to do integer cut from the first period to period 
(n-1). When n is big, |NZ| or |Z| or both are big. It means the feasible region for yj is large. We should 
find a feasible combination of integers in a large integer region. This will also take much time even if 
the infeasible combination of integers is near to period n. Therefore, we divide the scheduling 
horizon into several blocks according to the scheduled arrival times of vessels, denoted as 
Vessel-Arrival-Time based blocks. The first block begins at time zero and ends at the scheduled 
arrival time of the first vessel. The second block follows immediately after the first, and ends at the 
scheduled arrival time of the second vessel, and the remaining periods follow likewise. If the arrival 
time of a vessel is earlier than the latest expected departure time of its previous vessel, then the two 
blocks are formed to one block. The block division is shown in Figure 2. Each block spans several 
periods. Our block can overcome the disadvantages of the above two methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.3 Integer Cut Variables 
Note that if |NZ| or |Z| is a big number, then we may need many integer cuts. Thus we should reduce 
|NZ| and |Z| as much as possible to improve the efficiency of integer cut strategy. Based on this 
discussion, we choose integer cut variable. 
 

In this problem, only XPpt, XIit and Yiut are binary variables. In any period at least one Yiut is 
equal to 1 and any Yiut cannot be fixed because which tank feeds which CDU at any period is not 
known a prior. Therefore |NZ| or |Z| or both of Yiut are large for each integer cut although crude oil 
segregation exists. So Yiut should not be chosen for integer cut variables. Parcels may be connected to 
SBM or jetties although they may not begin to unload. In the same way, parcels may be connected to 
SBM or jetties although they are unloaded completely. Although we can fix some XPpt in terms of the 
arrival time of each parcel, |NZ| or |Z| for XPpt is still bigger compared to XIit which will be explained 
as follows. Moreover, changing parcel connection to SBM or jetties seems to be nonsense. XIit 
denotes tank connection to SBM / jetty discharge line. If the tank receives a parcel, then XIit is equal 
to one. Otherwise it is equal to zero. Reddy et al. (2004b) defined possible unloading periods for 
parcels, in other periods XIit was fixed to zero, but XPpt cannot be fixed to zero because parcel 
demurrage is allowed. So both |NZ| and |Z| for XIit are smaller than XPpt and Yiut. 
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The latest expected departure time of 1st vessel, 2nd vessel, …,the last vessel, 
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Figure 2 Vessel-Arrival-Time based block division 
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Crudes are segregated into several classes in practical operations of a refinery. Different 
classes of crudes are stored in different tanks and processed in different CDUs. We identify which 
class or classes of crudes fail and do integer cut respectively. This can reduce both |NZ| and |Z| and 
improve the efficiency of integer cut strategy. In addition, the change of XIit will cause the change of 
Yiut and may cause the change of XPpt based on the formulation, but the change of XPpt may not lead 
to the change of XIit and Yiut. Therefore integer cut for XPpt at each time may not lead to any changes 
of other variables. 

 
Therefore, we choose XIit as variables in our proposed integer cut. According to Lemma 1, 

the integer cut constraint for our problem can be described as follows. 
 | | 1it it

i NZi t B i Zi t B
XI XI NZi

∈ ∈ ∈ ∈

− ≤ −∑ ∑ ∑∑     (3) 

Where 
|NZi| is the cardinality of set NZi. 

 
6.4 Another MILP Formulation 
In Reddy et al. (2004b)’s algorithm, they use constraints (2a) and (2b) to correct the composition 
discrepancy in period t when solving in period t. If composition discrepancy exists in period t, then a 
solution can be obtained although the solution is infeasible. In other words, their algorithm cannot 
lead to infeasibility. Based on this idea, we introduce two slack positive variables u1iuct and u2iuct and 
add them to the constraints (2a) as follows, 

* 1 2iuct ict iut iuct iuctFCTU f FTU u u= − +     (4) 

 
If slack variables u1iuct and u2iuct are both zero, then constraint (4) is reduced to (2a). There 

is no composition discrepancy. If u1iuct or u2iuct, or both are nonzero, then composition discrepancy 
exists. Based on u1iuct or u2iuct, we can know which class or classes of crudes cannot meet constraint 
(2a). To get the value of u1iuct and u2iuc, we construct another optimization problem. 

 
To be convenient, the original MILP optimization problem denoted as (F) can be presented 

as follows, 
Max  Profit iuct c v ut t

i u c t v u t t
FCTU CP DC COC CO SC= − − −∑∑∑∑ ∑ ∑∑ ∑  

Subject to: original constraints in Reddy et al. (2004b) and constraints (1a) and (1b) 
(F) 

Another MILP optimization problem using Equation (4) instead of Equation (2a) and denoting as (F1) 
is constructed as: 
Min ( 1  2 )iuct iuct

i u c t
PK u u= +∑∑∑∑   (i, u) ∈ IU, (i, c) ∈ IC 

Subject to: original constraints in Reddy et al. (2004b) except (2a) and constraints (1a), (1b) and (5) 
(F1) 

 
Because (F1) is another MILP problem, solving this MILP problem may need much 

time. Note that (F1) is just to get values of u1iuct and u2iuct, we do not need to get an optimal 
solution for all cases. Therefore we prescribe computation time of solving (F1). By doing this 
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6.5 Integer Cut Strategy 
Now we present an iteratively algorithm based on integer cut to solve this MINLP problem. We first 
solve (F) by using Reddy et al. (2004b)’s algorithm and let r denote the period. When their algorithm 
fails, then we know in which period it fails according to r and know which block period r belongs to. 
Then we solve (F1) to obtain u1iuct and u2iuct. u1iuct and u2iuct tell us which or which classes of crudes 
cannot satisfy constraint (2a). If only one class of crudes cannot meet constraints (2a), then we set up 
integer cut constraint for XIit of that class of crudes from the beginning of that block to period (r-1) 
by using constraints (3). If two or more classes of crudes cannot satisfy constraints (2a) 
simultaneously, we set up integer cut constraints for different classes of crudes respectively. Then we 
add it or them to both (F) and (F1), return back to the beginning of that block and solve (F) again 
until the solver can find a feasible solution for (F). If the solver cannot give us a feasible solution in 
that block, then we will return back to the previous block and do integer cut again. The detailed flow 
chart for the improved algorithm is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
7. Partial Relaxation strategy 
Another challenge of crude oil scheduling is the speed and optimality. Our algorithm shows that 
composition discrepancy exists in the following blocks when we solve previous blocks. It means all 
variables in the following blocks are not feasible and useless for us. Based on this idea, we relax all 
binary variables in the following blocks when solving previous blocks. Figure 4 shows the idea of 
this partial relaxation method. By using this partial relaxation method, we can get a feasible solution. 
Starting from this initial feasible solution, we have two choices. One is to solve the whole problem as 
a NLP by fixing all binary variables and a MIP by fixing compositions of all tanks iteratively. The 
other is to solve a MIP and a NLP iteratively. The termination criterion for both choices is that a 
better objective cannot find between two successive NLP or the absolute relative difference between 
two successive NLP is smaller than an appropriate tolerance. We choose the better solution as our 
final solution. The tolerance used in this paper is 1.0×10-5. The whole process is called partial 
relaxation strategy. The procedure of partial relaxation strategy is shown in Figure 5. 
 
8. Results and Discussions 
Twenty examples are studied whose data mainly obtained from Reddy et al. (2004b) and Li et al. 
(2002). These examples involve different sizes and different real life operation features. Fifteen crude 
properties that are critical to crude distillation and downstream processing are incorporated in some 



examples. These fifteen crude properties are: specific gravity, sulfur content, nitrogen content, 
oxygen content, carbon residue content, pour point, flash point, Ni content, Reid vapor pressure, 
asphaltene content, aromatics content, paraffins content, naphthene content, viscosity content and 
wax content. All examples are computed on a Dell workstation PWS650 (Inter® Xeron™ CPU 
3.06GHZ, 3.5 GB memory) running Windows NT using solver CPLEX 9.0. 
 

 
All twenty examples are solved using the algorithms such as DICOPT, Li et al. 2002, Reddy 

et al., 2004b and our robust algorithm. The results are shown in Tables 1a to 1c. From Tables 1a and 
1c, it can be concluded that DICOPT fails to solve most problems and is horribly slow in solving the 
rest. The algorithm of Li et al. (2002) also fails in most problems. Even the best algorithm of Reddy 
et al. (2004b) fails to solve several problems. In contract, our improved algorithm works on all 
problems and is much more efficient than the other three algorithms (DICOPT, Li et al. 2002 and 
Reddy et al. 2004b). 
 

We also solve these twenty examples using partial relaxation strategy. The result is shown in 
Table 2a and 2b. Table 2a and 2b show that the partial relaxation strategy greatly reduces the 
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Figure 5 The procedure of partial relaxation strategy 



computation time and at the same time improves the solution quality for most examples. To further 
illustrate the capability of our partial relaxation strategy, three bigger examples whose horizons are 
about 60 periods (i.e., 20 days) are also solved, which is shown in Table 3. From Table 3, we can see 
that we can get feasible solutions for these three bigger examples within less computation time. 
 
9. Conclusion 
In this paper, we proposed a new robust algorithm based on a backtracking strategy using an 
intelligent integer cut to solve this complex MINLP problem. We evaluated the robustness of our 
improved algorithm using twenty examples of different sizes and with different real life operation 
features and compared its performance with other three algorithms. The results show that our 
improved algorithm is much more efficient than the other three algorithms. We also developed a 
partial relaxation strategy to further increase solution speed and improve solution quality. Our tests 
show that the partial relaxation strategy greatly reduced the computation time and improved the 
solution quality for most examples simultaneously, especially for scheduling problems with horizons 
as long as 20 days. In addition, two constraints were imposed to make sure practically realistic 
schedules with limited flow rate changes to the CDUs. 
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Nomenclature 
Sets 
B Set of blocks 
Subscripts 
b Blocks 
Parameters 
fkk1      Flow rate fraction between two adjacent period 
fkk2      Flow rate fraction between two adjacent period 
r         A parameter denotes period 
mnb          A parameter denotes block b is being solved 
rbb       The first period of block b 
Continuous Variables 
u1iuct     Slack variable 
u2iuct     Slack variable 
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