DIELECTRIC PROPERTIES OF CROSSLINKING EPOXY RESINS AT 2.45 GHZ

Liming Zong^{*1}, Shuangjie Zhou¹, Rensheng Sun², Leo C. Kempel², and Martin C. Hawley¹, ¹Department of Chemical Engineering and Materials Science, Michigan State University East Lansing, Michigan 48823 ²Department of Electrical and Computer Engineering, Michigan State University

²Department of Electrical and Computer Engineering, Michigan State University East Lansing, Michigan 48823

The dielectric properties of a crosslinking diglycidyl ether of bisphenol-A (DGEBA) and 3, 3'diaminodiphenyl sulfone (DDS) system have been studied over the temperature range of 25 to 120°C at 2.45 GHz. The epoxy resins at different extents of cure exhibit the γ relaxation, which can be described by the Arrhenius Rate Law. The relaxation is attributed to the motions of the dipolar groups associated with the crosslinking system. A simple model is proposed to represent the temperature dependences of the dielectric properties. A complete description of the evolution of the parameters during the polymerization was obtained. The nature of the information yielded by dielectrometry on the dynamics of the system is discussed.