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ABSTRACT 

In our previous work, we have studied the 
pattern formation during the electropolishing of 
both isotropic and anisotropic materials. Both 
models predict stable hexagonal and striped 
patterns and are in qualitative agreement with 
experiments.  In this paper, we study the small-
scale pattern size control during 
electropolishing. Our study shows that applied 
voltage, surface diffusion and surface desorption 
coefficients play a key role in decreasing the 
pattern size.   
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INTRODUCTION 

Electropolishing of aluminum is one of the self-
assembly techniques that can produce nanoscale 
ordered patterns, which have found many 
potential uses in magnetic recording media, 
electronic and electrooptical devices.  
Consequently, a thorough understanding of the 
mechanism is needed to better predict and 
control the pattern formation. 

Existing theory (Yuzhakov et al., 1997) 
hypothesized that the onset of the patterns forms 
as a competition between electrochemical 
dissolution and surfactant adsorption. We 
extended the existing theory by including both 
isotropic and anisotropic interfacial energy. The 
inclusion of the interfacial energy stabilizes the 
interface and decreases the dissolution rate. 
Therefore, the onset of the patterns comes from 
a competition between dissolution rate, 
surfactant adsorption, and interfacial energy 
(Guo and Johnson, 2003a & 2004).  We also 
have modified the evolution equation by 
including a damping term to account for 
variations in the bulk concentration. The 

addition of the damping term stabilizes the long-
wavelength disturbances and allows us to derive 
the spatiotemporal amplitude equations at the. 
(Guo and Johnson, 2003b)  
 
Our theory allows us to explore how to control 
the pattern size during electropolishing. Based 
on the derived evolution equation, we obtain an 
equation of pattern wavelength that is a function 
of applied voltage, interfacial energy, surface 
diffusion and surface desorption coefficient.  
Upon deriving the pattern wavelength equation, 
one can study the effects of different parameters 
on the pattern wavelength.  To verify the 
stability of pattern formation at such a small-
scale size, we perform further linear stability 
analyses to predict the wavelength of the 
patterns and weakly nonlinear analyses to 
predict the effects of the parameters on the 
stability of the patterns.  Studies show that 
temperature, applied voltage, and surface 
diffusion and desorption coefficients play a key 
role in reducing the pattern size.    
 
In this paper, we derive an isotropic governing 
equation that describes the evolution of the 
interface over time and space. We further derive 
an equation of pattern wavelength with 
interfacial energy, applied voltage, surface 
diffusion and desorption coefficients included.  
Upon obtaining the pattern wavelength 
equation, we study the effects of different 
parameters on the pattern wavelength. Finally, 
linear instability and weakly nonlinear analysis 
are conducted to analyze the stability region of 
patterns at the small-scale pattern level.  
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MODELING OF ELECTROPOLISHING 

1. Isotropic evolution equation 
The existing theory introduced the competitive 
mechanism between dissolution rate and 
surfactant adsorption rate. However, it did not 
account for interfacial energy, which we find 
has a significant effect on the results. The 
interfacial energy adds additional stability to the 
interface by restraining areas of high surface 
curvature.  This results in stabilizing the short 
wavelength disturbance and modifies the 
parameter region where stable patterns exist. 
Furthermore, it is found that the interfacial 
energy is needed in the model in order to predict 
stable hexagonal patterns.  
 
The interfacial energy is included in the 
evolution equation through the total 
electrochemical free energy. We neglect the role 
of velocity assuming that the momentum and 
diffusion boundary layers were much larger than 
the electric double layer.  We further assumed 
that the double layer thickness and the anodic 
chemistry were not affected by changes in 
composition.  A long-wavelength expansion of a 
Debye-Hückel equation is used to derive a 
relationship between the anode interfacial 
electric field and the interfacial shape, h.  A 
short-wavelength cut-off mechanism is further 
introduced to couple with the long-wavelength 
instability by using a quasisteady equation for 
the surfactant coverage. Eventually, a 
dimensionless evolution equation is derived 
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ν denotes the ratio of the activation energy of 
the dissolution to the adsorption while ν’ 

represents the ratio of interfacial energy to the 
activation energy for the adsorption.  The 
symbol ξ represents the dimensionless applied 
voltage. 

2. Mathematical analysis of the model 
A linear instability analysis of eqn. (1) shows 
that interfacial energy changes the linear 
stability criteria by making the region of 
unstable wave vectors smaller, and reducing the 
maximum growth rate.  A weakly nonlinear 
analysis shows that the interfacial energy 
significantly alters the parameter regions where 
stable striped and hexagonal patterns can exist.  
In particular, we found that the interfacial 
energy needs to be included in the model to 
predict stable patterns.  A numerical simulation 
of the evolution equation also predicts the 
stability and existence of stable striped and 
hexagonal patterns.  The results are shown in 
Figure 1.  
  

 

SMALL-SCALE PATTERN SIZE CONTROL 

The objective of this paper is to study how to 
control small-scale pattern size during 
eletropolishing of aluminum.  We have derived 
the evolution equation that describes the 
evolution of the interface over time and space.    
The pattern wavelength can then be defined as  
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a)                                   b) 

Figure 1.   Stable hexagonal and striped 
patterns from the nonlinear simulation with 
interfacial energy.  p = 1071/5329, s = 9/16, 

and ξ = a) 0.2 and b) 0.6. 
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Here U is the potential difference, a is a 
parameter determing the potential distribution 
across the anode, γ is the interfacial energy, β is 
an unknown positive coefficient measuring how 
the combined activation energy of diffusion and 
desorption depend on the electric field, *

aK  is 
the fieldless adsorption-desorption equilibrium 
constant, CM is the mole concentration of 
aluminum, Z is the metal ion charge, and rξ  is a 
parameter used to calculate the value of **

ds kD . 
The Debye length Eδ  is estimated from the 
Poisson-Boltzmann equilibrium of the Debye-
Huckel theory 
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Here Z0 is the solution ion charge, Ceff is the 
effective ion concentration on the surface, and ε 
is the permittivity of the medium. From Eq. (2),  
it is clear that the values of U, **

ds kD , T, γ, and 
Ceff  are predominant factors in reducing the 
wavelength while reducing the effective 
polarizability difference α , and parameter a 
could lead to smaller patterns in a narrow 
region.   In particular, It is found that changing 
the value of **

ds kD may significantly reduce the 
pattern wavelength.   Figure 2 shows that the 
pattern wavelength for the range of 45 V to 65 
V is around 100 nm when rξ  is 0.68.    
However, the pattern wavelength can be 
significantly reduced to near 10 nm if rξ is 
chosen big enough. To verify that the pattern 
formation is indeed stable at such a length scale, 

we perform a linear instability and weakly 
nonlinear analysis. 
 

 
1. Linear instability analysis 
Linearizing eqn. (1) and substituting a normal 
mode H ~ exp (λτ+i (kx+ly)) yields the growth 
rate 
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The wavenumber at maximum growth rate qm is 
therefore given by 
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Equation 4 shows that the wavenumber with the 
maximum growth rate changes with the 
interfacial energy.  

2.Weakly nonlinear analysis  
The expansion of the interfacial height in terms 
of the various modes is given as follows  
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Here Wj represents the unstable modes, Vj 
represents the stable harmonic modes, and Uj 

 
Figure 2.   Pattern wavelengths of various 
applied voltage are around 100 nm when rξ  is 
0.684. 
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represents the stable resonant modes.  
Substituting H into the linearized equation and 
following the standard procedure to isolate the 
most unstable modes, yield the following 
amplitude equations.   
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The amplitude coefficients γ0, γ1, γ2, and γ3 
depend on the maximum growth rate qm, applied 
voltage U, **

ds kD , temperature T, interfacial 
energy γ, ion concentration Ceff, and other 
parameters.   Once a parameter is changed, the 
amplitude coefficients change, which changes 
the stability of the patterns. Our study shows 
that when **

ds kD  is decreased to 1.45×10-17 at 
the temperature of 120 oK, an extremely small 
pattern wavelength of less than 15 nm can be 
achieved.  Figure 3 plots the pattern 
wavelengths versus **

ds kD  under various 
applied voltages.   Linear instability and weakly 
nonlinear analysis shows that both stripes and 
hexagons exist but only hexagons are stable at 
such a small wavelength sale.  It is also found 
that the applied voltage has an obvious effect on 

controlling pattern wavelength, as shown in 
Figure 4.  
 
However, as shown in Figure 5, pattern 
wavelengths are not very sensitive to changing 
the fieldless adsorption-desorption equilibrium 
constant Ka

*, when Ka
* is less than 1.  Therefore, 

small patterns can be achieved by adjusting the 
applied voltage, electrolyte compositions, 
temperature, different metal/electrolyte systems 
that change the interfacial energy, and special 
surfactants that give very low diffusion 
coefficient and high desorption rate.   
 

 

 
Figure 3. Pattern wavelengths can be dramatically 
reduced to less than 15 nm at the voltage of 45 V.   

 
Figure 4. Applied voltage can be adjusted to create 
smaller patterns.  

 
Figure 5. Pattern wavelengths are not very 
sensitive to changes in the fieldless adsorption-
desorption equilibrium constant Ka

* that are less 
than 1.  
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SUMMARY 
We have studied the small-scale pattern size 
control during the electropolishing of a metal.  
A linear instability analysis and a weakly 
nonlinear analysis are employed to study the 
effect of changing variables on the pattern 
wavelength.   In particular, it is found that the 
choice of surfactant can significantly change the 
pore size due to the surfactant’s surface 
diffusion and desorption coefficients.   
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