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EXTENDED ABSTRACT

Predictions of the microstructure of complex fluids, such as liquid crystalline polymers
or concentrated rigid rod suspensions, are often based on a moment equation for the
orientation dyad p p< >  that requires a closure model for the orientation tetrad p p p p< >(see
Doi and Edwards, 1986). Here the unit vector p  represents the instantaneous orientation of a
constituent component of the dispersed phase, such as a rigid rod. Unfortunately, the
widespread use of the method of moments to characterize the microstructure has been limited
by the absence of a practical and accurate closure model that relates the dispersed phase
orientation tetrad (fourth-order moment) to the dispersed phase orientation dyad (second-order
moment).

The fraction of the dispersed phase having orientation coordinates on the unit sphere
in the range 0 ≤ θ ≤ θ + ∆θ and 0≤ φ ≤ ∆φ is given by

P{0 + ,0 + } = ( , , t ) sin( ) d d≤ θ ≤ θ ∆θ ≤ φ≤ φ ∆φ Ψ θ φ θ θ φ .                                                              (1)

The orientation distribution function ( , , t)Ψ θ φ  in the above definition is governed by
Smoluchowski's equation:
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subject to the condition that
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Here RD represents the rotary diffusion coefficient (1/time) and MSΔU  is the Maier-Saupe
potential for the excluded volume,
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The Maier-Saupe (MS-) potential depends explicitly on the microstructure and implicitly on the
volume fraction of the dispersed phase through the phenomenological coefficient U.



Low-order moments of the orientation distribution function are used to characterize the
microstructure of fiber suspensions and complex fluids such as liquid crystalline polymers.
The second moment, or orientation dyad, is defined as follows:
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An equation for p p< >  can be written as
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In the above equation, u∇  is the velocity gradient. For liquid crystalline polymers, it is
noteworthy that the orientation tetrad directly impacts the microstructure by coupling with both
the orientation dyad and the strain rate,

p p p p : p p and p p p p : S< > < > < > .

Recently, a new closure for the orientation tetrad has been developed that retains the
six-fold symmetry and six-fold projection properties of the exact fourth order moment (see
Petty et al., 1999; Nguyen et al., 2001; Kini et al., 2003). A preclosure for the orientation tetrad
(FSQ-preclosure) is given by

2 1 2 2p p p p (1 C ) p p p p C p p p p< > = − < > + < >      where                                                              (7)
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In the above equations, the result of the operation S[ A , B] is a fully symmetric tetradic-valued
operator formed from the two indicated symmetric dyadic-valued operators. In this research,

RD and U are independent of the local microstructure. In general, the closure coefficient C2

depends on the invarants of the structure tensor bII tr(b b)≡ ⋅  and bIII tr(b b b)≡ ⋅ ⋅ , where
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If the relaxation of planar anisotropic states is controlled by Brownian motion, then the
coefficient C2 is given by
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In this research, Eq.(11) is extended to all realizable states of the microstructure.

The foregoing theory seeks a balance between the flow alignment process and the
rotary diffusion process in orientation space. U is a dimensionless measure of the strength
of the Maier-Saupe potential and accounts for the excluded volume self-alignment
process on the rotary diffusive flux. In the absence of flow and for U > 5, the equilibrium
states predicted by the above theory are anisotropic. Although an isotropic microstructure
satisfies the steady-state moment equation for all values of U, a dynamic analysis of the
orientation dyad shows that the isotropic state is stable for U < 4.656 and unstable for U >
5.000. For 4.654 < U < 5.000, three steady states are predicted: a conditionally stable isotropic
state, an unstable anisotropic state, and a conditionally stable anisotropic state.  The quadratic
form associated with the anisotropic microstructure has a prolate shape. The theory is
consistent with the qualitative behavior of lyotropic liquid crystalline polymers and other
theories for LCP microstructure. For example, at high concentration of the dispersed phase
and in the absence of an external field, the theory together with Eq.(11) predicts that all
realizable microstructures relax to multiple equilibrium realizable states.
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