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Abstract 
For the calculation of reactive flows in bubble columns the local interfacial area is one of the key parameters. In 
addition backmixing causes a residence time distribution in the gas and liquid phase, thus mixing phenomena 
have to be considered as well. The three-dimensional, instationary flow fields in bubble columns are 
numerically calculated using an Euler multi-fluid model. The resulting set of equations enables the 
simultaneous calculation of mass transfer and backmixing in the gas and liquid phase. Therefore the local 
bubble size is calculated in dependence of the flow field using a transport equation for the mean bubble 
volume. A perfect tracer is added into both the gaseous and the liquid phase. From the calculations the time-
dependent concentration fields are obtained. Assuming the one-dimensional dispersion model the axial 
dispersion coefficients are calculated. The dispersion coefficients for the gas and liquid phase are in good 
agreement with experimental investigations of several authors. The multi-fluid model is then extended to 
consider mass transfer between gas and liquid phases. 
 
 
Introduction 
 
For the design of bubble column reactors several empirical correlations have been proposed 
to determine the interfacial area density and backmixing [1], [2]. The conventional design 
approach is based on these correlations. With increasing computer power computational 
fluid dynamics is an alternative way to get further insights into the complex two-phase flow. 
The coupling of population balance equations with computational fluid dynamics enables the 
calculation of the local interfacial area. In this paper a transport equation for the mean bubble 
volume originating from a population balance equation approach is coupled with an Euler 
multi-fluid model. For the calculation of reactive flows not only the interfacial area has to be 
known but also the mixing properties of the column have to be reasonably predicted. 
Therefore a perfect tracer is injected into the liquid and the rising bubble swarm to determine 
backmixing.  
 
 
Governing equations for bubbly two-phase flow 
 
For the modeling of bubbly flow the Euler-Lagrange and the Euler-Euler approach are 
common. In addition Direct Numerical Simulations can be applied to calculate the motion of 
single bubbles and the movement of the gas-liquid interface. For large-scale flows however 
the Euler-Euler approach is most suitable since it is numerically more efficient than the 
Euler-Lagrange approach. The Euler approach assumes all phases to be continuously 
distributed in the computational domain. Therefore also the dispersed gas phase is 
described by a quasi-continuous fluid. The interphase coupling of the balance equations for 
mass and momentum is considered by interphase transfer terms. For high superficial gas 



velocities the heterogeneous flow regime arises. The enhanced coalescence leads to the 
formation of a bi-modal bubble size distribution. Therefore the gas phase is described by two 
interpenetrating phases, which contain the small and the large bubble fraction. Using a multi-
fluid approach the governing balance equation for momentum of the i-th phase is 
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The index l denotes the liquid phase, 1 and 2 label the small and the large bubble fraction. 
The terms on the left side of eq. (1) describe the local and convective change of momentum. 
These terms are balanced by the forces on the right side, namely the forces due to the bulk 
pressure gradient, viscous shear, gravitational force and the interphase transfer of 
momentum. The last two terms represent source and sink terms for second order 
momentum transfer between the small and the large bubble fraction due to bubble 
coalescence and break-up. Thus these terms only arise in the gas phases. The interphase 
momentum transfer is mostly influenced by the interphasial drag force. Although additional 
forces such as lift or added mass forces arise in bubbly flow these forces are neglected here 
since they play only a minor role following Loth [3] and Joshi [4]. The interphase momentum 
transfer is calculated to 
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The drag coefficient CD is calculated following Clift et al. [5] to 
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In eq. (3) the Reynolds- and Eötvös-number are defined as follows: 
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In eq. (5) the surface tension between the liquid and gas phase is σ. The bubble diameter di 
is calculated from a transport equation for the mean bubble volume. The transport equation 
for the mean bubble volume of the small and the large bubbles are obtained as given by 
Lehr et al. [6]. These transport equations are coupled with the balance equations for mass 
and momentum. The solution of these transport equations also enables the calculation of the 
Sauter-diameter of the bubble size distribution.  
 
 



The mass balance equation is written to 
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The first two terms on the right hand side of eq. (6) describe mass transfer between the gas 
phases due to bubble break-up and coalescence. Therefore they only arise in the gas 
phases rather than in the liquid phase. The third term considers mass transfer from the 
gaseous to the liquid phase.  
The gas phase consists of two components, which are identical in their properties. In 
addition to the global mass balance the components mass balances are considered. For the 
calculation of the mass transfer rate the phase equilibrium at the gas-liquid interface is 
described following Henry’s law. The mass transfer rate is calculated to  
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with the bulk molar concentration of the liquid phase cl and the bulk molar concentration of 
the transferred component. The mass transfer coefficient is calculated in dependence of  a 
Sherwood-number. For small Reynolds-numbers the bubbles are spherical shaped whereas 
with increasing Reynolds-number turbulent motions at the surface become more and more 
important and the bubbles loose their shape. Therefore for small Reynolds-numbers below 
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the Sherwood-number is calculated according to Brauer [7] 
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For larger Reynolds-numbers the correlation 
 
  7.089.0 ScRe015.02Sh +=  (11) 
 
is used instead of eq. (10). 
 In bubbly two-phase flow the turbulent velocity fluctuations in the liquid phase are 
caused by the shear induced turbulence as well as due to the presence of bubbles. In this 
work the influence of the bubbles on the liquid turbulence is described following the proposal 
of Lopez de Bertodano [8]. The set of equations is solved with the method of finite volumes. 
Therefore the code CFX-5.7 is used. The computational domain is discretized with a block-



structured grid of hexahedral volumes. The edge length is about 1cm and time-steps of 
0.02s are applied. The convective terms are discretized by a second order method. 
 
 
Dispersion models  
 
Backmixing in the liquid and the gas phase is caused by several mechanisms. The formation 
of liquid vortices, the occurrence of stagnation zones as well as the turbulent velocity 
fluctuations cause a residence time distribution in the liquid phase. In addition the 
coalescence and break-up of bubbles and the non-uniform distribution of the gas phase 
enhance the formation of a velocity profile in both phases. Coalescence and break-up of 
bubbles also enhance backmixing in the gaseous phase. For the description of backmixing 
several models have been developed as summarized by Levenspiel [1]. One of the most 
popular ones for backmixing in bubble columns is the axial dispersion model, that describes 
the deviation from ideal plug flow.  
The mass flux due to dispersion is described in analogy to molecular transport, although 
both phenomena differ in their physical nature. In bubbly flow the mass flux due to dispersion 
is higher than the molecular transport thus the mass balance for a cross sectional element of 
the bubble column is written to 
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neglecting molecular transport and radial dispersion. For a batch operated liquid phase and 
a pulsewise tracer injection the solution of eq. (12) is approximated by the following 
summation of infinite terms following Ohki and Inoue [9] 
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The stationary concentration of the tracer is labeled c∞, the instantaneous concentration is c. 
For the practical use of eq. (13) only the first ten terms have to be included. The left side of 
eq. (13) can be obtained by experiments or as in this work from a numerical calculation of 
the three-dimensional, instationary flow field. The tracer in the gas phase is injected 
continuously in the rising bubble swarm. Therefore a sinusoidal tracer inlet concentration is 
used. The solution of eq. (12) for the case of a sinusoidal input signal leads to the following 
equation for the axial dispersion coefficient 
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The angular frequency of the sinusoidal input signal is ω, the dispersion height is H, the 
integral volume fraction of gas is αg and the superficial gas velocity is jg. The amplitudes of 
the tracer concentration are cin at the inlet and cout at the outlet, respectively.  



 
Results 
 
Calculations are performed for three-dimensional, time-dependent flow-fields in cylindrical 
bubble columns. 
 In Fig.1 the calculated flow field in a bubble column with 3m height and 40 cm 
diameter is shown. The liquid streamlines are colored with the specific interfacial area 
density, the volume fraction of gas and the axial liquid velocity. The superficial gas velocity is 
0.1 m/s thus the heterogeneous flow regime is present. 
 
 

 
Figure 1: Instantaneous flow field in a bubble column 

 
The flow field is characterized by several large scale vortices in the order of the column 
diameter. Large values of the interfacial area density are calculated in particular in the core 
region of the column whereas a low interfacial area is calculated near the walls. The axial 
liquid velocity reaches from –1.0 to 1.0 m/s. In correspondence with the regions of high gas 
volume fractions the liquid is transported upwards in the core region and flows downwards 
near the column walls.  
 The liquid tracer is injected at the top of the column. In Fig. 2 the time-dependent 
concentration is shown for two axial positions. In addition the calculated concentrations for 
several radial positions are also given. Immediately after the injection the tracer is 
transported downwards in the near wall region. For larger times the tracer is distributed over 
the whole cross section of the column due to the vortical flow structure. Finally an almost 
homogeneous distribution of the tracer is reached. The tracer concentration first increases at 
the upper axial positions 5s after the injection. The tracer concentration reaches a maximum 
value and then decreases to a constant value. In accordance with its longer distance to the 
injection point the concentration at the lower position increases later. The concentration 
increases slowly and reaches the constant value 68 s after the injection. The fluctuations in 
the concentration increases from the axial position towards the column wall. In particular the 
fluctuations are damped with increasing time and increasing distance from the injection 
point. 



 
Figure 2: Calculated tracer concentration in the liquid  

 
 
 For comparison with experimental results the axial dispersion model is applied to 
calculate the axial dispersion coefficients. Therefore the tracer response curves as depicted 
in Fig. 2 are approximated using eq. (13). The calculated Bodenstein- and Froude-number 
are shown in Fig. 3. In addition the experimental results of Deckwer [1] are given.  

  
 

Figure 3: Bodenstein-number vs. Froude-number 
 
With increasing superficial gas velocity the dispersion coefficients increases thus enhanced 
backmixing in the liquid phase occurs. 
 The gas tracer is injected continuously into the rising bubbles swarm. The 
calculations are performed for a cylindrical bubble column in accordance with the 
experimental investigations of Mangartz and Pilhofer [10]. In Fig. 4 the calculated and 
experimental dispersion coefficients are shown. 



 

 
Figure 4: Axial dispersion coefficient for the gas phase 

 
 The dispersion coefficients increase with increasing superficial gas velocity. For low 
superficial gas velocities corresponding to the homogenous flow regime the increase is 
slighter than in the heterogeneous flow regime. Thus the enhanced formation of vortices and 
the formation of a bi-modal bubble size distribution significantly influence the mixing 
properties of the bubble column. The proposed multi-fluid model reasonably predicts the 
large-scale mixing behavior of bubble columns. Thus the model is extended to include 
reactive flows.  
 Therefore the absorption of the gas phase is considered. The calculated flow fields 
for bubble columns with 2m height and 20cm diameter are shown in Fig. 5 with and without 
considering mass transfer.  
 

 
 

Figure 5: Instantaneous flow fields for several mass transfer rates 



The calculations consider two-phase flow without absorption, the physical absorption and the 
enhanced absorption of the gas phase. The absorption process reduces the volume fraction 
of gas with increasing column height. The overall gas holdup for the cases A,B and C are 
0.318, 0.278 and 0.085. In particular for the case of an enhanced absorption the volume 
fraction is significantly reduced. The interphase momentum transfer is reduced according to 
the reduced gas volume fraction. Thus the flow pattern and the specific interfacial area 
density in the bubble column are changed.  
 Due to the absorption the bubble diameter decreases. The enhanced absorption 
significantly changes the bubble diameter as shown in Fig 6.  
 

 
 

Figure 6: Influence of mass transfer on bubble diameter 
 
The bubble diameter of the large and small bubble fraction are given for the case without 
mass transfer and for the enhanced absorption. In particular in the downwards flowing part of 
the circulation loop small bubbles are calculated corresponding with the low gas volume 
fraction. 
 
 
Conclusion 
 
A multi-fluid model is applied to calculate three-dimensional, instationary flow fields in bubble 
columns considering the local bubble size. Therefore the gas phase is decribed by two 
interpenetrating phases, which represent the small and the large bubble fraction. 
Considering multiple components in the gas and liquid phase the dispersion of a tracer in 
both gas and liquid is calculated. As result the time-dependent concentration fields are 
obtained. For comparison with experimental investigation the axial dispersion coefficients are 
calculated. The multi-fluid model predicts the axial dispersion coefficients for the gas and 
liquid phase in good agreement with experimental results. Thus the model is then extended 
to include mass transfer from the gas to the liquid phase. For large mass transfer rates the 
reduction of the volume fraction of gas influences the flow pattern significantly.  
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Nomenclature 
 
Latin letters 
 
Symbol  Units  Meaning 
a  m-1  specific area density 
c  mol m-3  molar concentration 
CD  -  drag coefficient 
d  m  bubble diameter 
D  m  column diameter 
E  m2 s-1  dispersion coefficient 
Eo  -  Eötvös-number 
F  kg m-2 s-2  force per unit volume 
g  m s-2    gravitational acceleration 
H  kg m-2 s-2 Henry constant 
i,j  -  index   
k  m2 s-3  turbulent kinetic energy 
n  -  index 
p  kg m-2 s-2 pressure 
Re  -  Reynolds-number,  
Sc  -  Schmidt-number 
Sh  -  Sherwood-number 
t  s  time 
u  m s-1  velocity 
x  m  coordinate 
 
 
Greek letters 
 
Symbol  Units  Meaning 
α  -  volume fraction 
β  m s-1  mass transfer coefficient 
δ  m  distance 
ε  m2 s-3  turbulent dissipation rate 
ζ  -  mass fraction 
η  kg m-1 s-1 dynamic viscosity 
µ  kg kmol-1 molar mass 
ν  m² s-1  kinematic viscosity 
π  -  Pi=3.14… 
ρ  kg m-3  density 
σ  kg s-2  surface tension 
ω  s-1  angular frequency 
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