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Efforts to model and identify gene regulatory networks have typically involved the 
consideration of every gene potentially regulating every other gene (Brazhnik et al., 2002).  For 
most organisms of interest, the genome is so large that determination of the gene regulatory 
network on this basis becomes intractable due to the enormous number of parameters that 
must be estimated from limited experimental data.   
 
 Recently, we have described a structured framework for modeling and identification of 
gene regulatory networks (Zak et al., in review).  The structured approach divides a cell into 
two subcellular regions: nuclear and cytoplasmic.  The cytoplasmic model seeks to describe 
the activity of the transcription factors in response to extracellular signals and gene expression; 
the nuclear model describes gene activation as a function of transcription factor interactions.  
Such subcellular organization for the model may be obtained from prior knowledge of gene 
functions and intracellular signaling pathways.   
 
 The nuclear model may be further organized into the nuclear connectivity network, 
which specifies which transcription factors regulate which genes.  This network may be 
determined experimentally, or by combining clustering approaches with gene expression 
patterns, promoter sequences, and algorithms or databases for identifying transcriptional 
regulatory elements (Vadigepalli et al., 2003), as has been done in previous studies (Tavazoie 
et al., 1999).  Instead of identifying network structure and model parameters simultaneously as 
in unstructured approaches, structured model identification involves the determination of only 
those parameters that quantify the functional interactions between network components.  
Thus, by largely defining network structure through the inclusion of available biological 
information, the structured modeling approach is well suited for constructing models from 
microarray data that are often limited in quantity and quality (Nadon and Shoemaker, 2002). 
 
 The present work applies the structured approach to model the response of rat 
hepatocytes to glucocorticoids as a case study for a mammalian system.  We selected this 
system as a test-bed because of (1) its physiological importance as an anti-inflammatory drug 
(Jin et al., 2003), (2) the availability of a high quality cytoplasmic model for the initial system 
response (Ramakrishnan et al., 2002), and (3) the availability of in vivo microarray time course 
data that are of sufficient quality to support the modeling approach we have proposed (Almon 
et al., 2003).  
 
 Thus far our work with this system has centered on the development of its nuclear 
connectivity structure.  One key step in this process involves the grouping of genes on the 
basis of similarity in their expression profiles, and numerous clustering approaches to 
accomplish this have been described (Sherlock, 2000).  An alternative clustering method has 
been developed that accounts for the essential dynamics of gene transcription (Sasik et al., 
2002).  This method assumes that the expression time-course for any regulated gene is the 
response of a first-order dynamic system to a finite-width pulse, where the degradation 
constant for each gene has been assumed to be invariant and transcription has been idealized 



as a pulse input occurring between a particular onset and cessation times.   Parameters in this 
first order finite width pulse response (FOFWPR) model may be estimated for each gene from 
its expression profile via least-squares minimization.  Genes are then grouped on the basis of 
similarity in their estimated parameters.  Since this method accounts for basic transcriptional 
dynamics, and reduces each expression profile to four characteristic parameters, we have 
employed it in the present work. 
 

Only a subset of all genes in the dataset was adequately described by the FOFWPR 
model, as would be expected given that not all genes in the system will be responsive to 
glucocorticoids.  Preliminary promoter analysis of the gene groups suggests that the regulation 
underlying the liver transcriptional response to glucocorticoids involves a complex interplay 
between several transcription factors.  For example, we found that the promoters of the 150 
upregulated genes that best fit the FOFWPR model were significantly (p < 0.01) enriched for 
binding sites for the transcription factors Ikaros and CRE-BP1 (ATF2).  Antagonistic and 
activating interactions between glucocorticoids and these transcription factors have been 
reported previously (Newell et al., 1994; Wargnier et al., 1998).  Our future work will involve 
further development of the nuclear connectivity structure for this system through consideration 
of additional clustering approaches.  We will then integrate the nuclear connectivity with the 
existing cytoplasmic model for this system and the gene expression profiles for the relevant 
transcription factors, leading to a predictive, integrative model that describes the complex 
transcriptional regulation underlying this physiologically important response. 
 

The focus of our presentation will be on the formulated model of the gene regulatory 
network describing the liver response to corticosteroids.  Emphasis will be placed on how the 
model was constructed, and the assumptions made during its synthesis.  In particular, the 
nuclear connectivity structure developed for this system will be described in detail, and the 
efficacy of the FOFWPR model as a technique for clustering will be reported. 
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