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Introduction

The pursuit of a systems-level understanding of biological processes constitutes one of
the central goals of systems biology. In this work, a combination of experimental techniques
and mathematical modeling has been applied to analyze the impact of signal transduction via
the second messenger cyclic AMP (cAMP) on the coordination of energy metabolism and cell
cycle progression in the yeast Saccharomyces cerevisiae. The aim of this work is to develop a
single-cell model which provides a combined description of metabolic processes and signaling
events in conjunction with a dynamic representation of the cell cycle.

In yeast, activation of protein kinase A (PKA) via a cAMP-dependent signaling cascade
triggers a stimulation of glycolytic flux and stimulates breakdown of the storage carbohydrates
glycogen and trehalose while downregulating their synthesis. The stimulation of glycolytic flux
results from the joint action of increased storage carbohydrate breakdown and the upregulation
of several glycolytic enzymes and inhibition of key gluconeogenetic enzymes, respectively, due
to phosphorylation by PKA. This kinase also acts upon the cell cycle machinery by influencing
the dynamics of G1 cyclin concentrations, which determine the critical cell size required for
budding. PKA has also been shown to affect the timing of mitotic exit - and thus the cell size at
division - by modifying the activity of the anaphase promoting complex (APC). 

Experimental Analyses

Experiments have been performed in oscillating, partially-synchronized chemostat
cultures as well as in synchronous cultures obtained by centrifugal elutriation. These allow to
assay yeast cell cycle dynamics at the quasi-single cell level while providing sufficient biomass
for biochemical assays, e.g., to determine intracellular concentrations of metabolites or second
messengers. The population distribution of cell cycle stages in a cell population were quantified
using different microscopic techniques and flow cytometry. 

These investigations have demonstrated distinct dynamics of cAMP and downstream
targets of PKA in energy metabolism during the cell cycle [1]. In particular, a peak in the cAMP
concentration was observed at the transition from G1 to S phase at low growth rates, which
was followed by increased storage carbohydrate breakdown, high rates of oxygen uptake and
carbon dioxide excretion as well as temporary formation of the overflow metabolites ethanol
and acetate. By contrast, cAMP was low during early mitosis, which agrees with the well-



known fact that a high APC activity is required for mitotic exit. This feature was found to be
conserved at higher growth rates whereas the timing of the cAMP peak seemed to shift to later
timepoints during the S/G2 phase in this case. The upstream signal responsible for the
differential activation of this signaling pathway during the cell cycle has remained elusive so
far. We have obtained evidence suggesting that intracellular nucleotide concentrations may
play a role in linking cAMP signaling and hence cell cycle progression to the energetic state of
the cell, at least under glucose-limited conditions.

Development of a Modular Mathematical Model

A mathematical model has been developed, which aims at capturing not only the
dynamics of cAMP-PKA signal transduction,  but also that of central carbon metabolism and
the cell cycle machinery itself. The integrated single-cell model features a modular structure
where each of the processes constitutes a module of its own. These submodels are
interconnected via multiple feedback effects which occur in this network (see Figure 1).  

Figure 1   Sketch of the modular model describing the impact of cAMP and PKA  on energy 
    metabolism and cell cycle progression. The different modules are interconnected 
    via feedback effects. Question marks and dotted lines indicate hypothetical
    interactions (Hxk: hexokinase, µ: specific cellular growth rate, pHin: intracellular 
    pH,  rPDC: rate of pyruvate decarboxylase, rPDH: rate of pyruvate dehydrogenase).

The signaling module comprises the dynamics of cAMP synthesis and degradation as
well as the resulting PKA activation. Simulation studies demonstrate that the model is able to
reproduce, e.g., the adaptive response of the signaling pathway to a persistent extracellular



stimulus of extracellular glucose observed in experiments. This behavior results from the
negative feedback of PKA activity on cAMP production. 

The metabolic module is based on a previously established model of glycolysis and the
pentose phosphate pathway [2, 3], which has been extended to include the dynamics of the
storage carbohydrates trehalose and glycogen along with their associated regulation by PKA.
Cell growth is modeled as a simple stoichiometric relation where the specific growth rate is
directly dependent on the output of the metabolic module. Estimation of model parameters for
this module was performed based on measurement data from stimulus-response experiments
in chemostats.

A kinetic model of the yeast cell cycle machinery developed by Chen et al. [4] and
Cross [5] constitutes the basis of the cell cycle module. The original model was amended to
account for PKA influence on cell cycle progression (cf. Figure 2b). In particular, the delay in
expression of G1 cyclins and the inhibition of APC activity during mitosis by high PKA levels
have been accounted for. Population distributions of cell age and nuclear morphology were
determined in chemostat cultures at steady state (µ=0.1 h-1). 

Figure 2   Development of the cell cycle module. Population distributions of nuclear
       morphology and bud scars (a) were used to estimate parameters of the 
       extended cell cycle model (b). Highlighted areas in the scheme indicate 
       reactions that have been added to or modified in the original model [4, 5]. 
       (c) Simulated cell cycle duration of mother and daughter cell cycles at 
       different specific cellular growth rates according to the dynamic model 
       shown in (b).

Cell age was determined by scoring the number of bud scars on Calcofluor-stained cells
under the fluorescence microscope. Similarly, cells stained with DAPI
(4’,6-diamidino-2-phenylindole), which yields nuclear DNA blue-fluorescent, were used to
classify cells according to nuclear morphology into four categories: (i) cells with single nucleus
and without bud, (ii) cells with single nucleus carrying a bud, (iii) budded cells with elongated
spindle, and (iv) binucleate cells. These procedures were carried out for several samples and
at least 800 cells were scored per sample in both cases. From this data, the fractions of the
respective cell classes in the population were determined. Assuming balanced growth
conditions [6, 7], it is possible to calculate the duration of the different cell cycle phases in both



mother and daughter cells, respectively, from these fractions. A modified version of the set of
the population balance equations suggested by Bellgardt [8] and Alberghina et al. [9] was
employed for this purpose. In this way, it is possible to determine the length of the cell cycle
phases under well-controlled conditions from asynchronous chemostat cultures at steady state
without the need to synchronize cells. This approach has the additional benefit that it relies on
real single cell data while at the same time capturing the variation present in the real cell
culture. The calculated duration of the phases were subsequently used to estimate
newly-introduced parameters of the dynamic model (cf. Figure 2b) by non-linear optimization.
The resulting model describes the impact of cAMP and PKA on the dynamics of cell cycle
progression at different growth rates. Especially, the growing asymmetry in cell cycle duration
between mother and daughter cells with decreasing growth rates observed in experiments is
correctly reproduced by the model (cf. Figure 2c).

 
Conclusion

Upon integration of the developed modules, the resulting single-cell model will yield a
dynamic description of the cAMP-dependent regulation of metabolism and cell cycle
progression during the different cell cycle phases. Information from global datasets and
published experimental data as well as own measurements in synchronous cultures and
stimulus-response experiments in chemostats have been employed for estimation of model
parameters. This guarantees the intimate connection of experiments and model development
characteristic of systems biology. The chosen modular approach is potentially applicable to
systems of medical importance where the link between signal transduction, energy
metabolism, and the cell cycle is crucial, e.g. when modeling tumor cell behavior. Moreover,
the model can also serve as a basis for a segregated description of heterogeneous cell
populations [10, 11], an issue of major importance in the operation of large-scale bioprocesses.
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