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Abstract

Sensitivity analysis quantifies the dependence of system “behavior” on the parameters that af-
fect the process dynamics. Classical sensitivity analysis, however, does not directly apply to dis-
crete stochastic dynamical systems, which have recently gained popularity because of its relevance
to biological processes. In this work, the sensitivity analysis for discrete stochastic processes is
developed based on density function (distribution) sensitivity, using an analog of the classical sen-
sitivity and the Fisher Information Matrix. There exist many circumstances, such as in systems
with multistability, in which the stochastic effects become nontrivial and classical sensitivity analysis
on deterministic representation of the system cannot adequately capture the true system behavior.
The proposed analysis is applied to a bistable chemical system - the Schlögl model [1], and to a
synthetic genetic toggle switch model [2]. Comparisons between the stochastic and deterministic
analysis show the significance of explicit consideration of the probabilistic nature in the sensitivity
analysis for this class of processes.

1 Introduction

Traditionally, the concept of sensitivity applies to continuous deterministic systems, e.g., systems
described by differential (or differential-algebraic) equations. The sensitivity coefficients are given
by [3]

Si,j =
∂yi(t)

∂pj

(1)

where yi denote the i-th output, t time, and pj the j-th parameter. Although this concept has wide
applicability, it does not directly apply to stochastic/probabilistic systems whose outputs take random
values with probability defined by a density function. Nevertheless, sensitivity analysis of stochastic
differential equations has been previously developed [4, 5] where the stochastic effects enter as
additive Gaussian white noise in the differential equation (e.g. Langevin-type problems).

Discrete stochastic modeling has recently gained popularity because of its relevance in
biological processes [6, 7] which achieve their functions with low copy numbers of some key chem-
ical species. Unlike the solutions to stochastic differential equations, the states/outputs of discrete
stochastic systems evolve according to discrete jump Markov processes, which naturally leads to
a probabilistic description of the system dynamics. The states and outputs are random variables
governed by a probability density function which follows a chemical master equation (CME) [1]. The
rate of reaction no longer describes the amount of chemical species being produced or consumed
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per unit time in a reaction, but rather the likelihood of a certain reaction to occur. Though analytical
solution of the CME is rarely available, the density function can be constructed using the Stochastic
Simulation Algorithm [8].

This work aims to develop an analog of parametric sensitivity for discrete stochastic sys-
tems. Four sensitivity measures were formulated based on a direct extension of the deterministic
sensitivity and on the Fisher Information Matrix (FIM) from information theory [9]. In addition, the
stochastic effects in certain systems can give rise to distinctive density functions, involving mul-
timodality, which necessitate application of the proposed analysis. The proposed analysis was
applied to two representative examples depicting these circumstances: a prototype chemical re-
action network - the Schlögl model [1], and a model for a synthetic genetic toggle switch in E. coli
[2]. The toggle switch consists of two repressor-promoter pairs aligned in a mutually inhibitory net-
work. Comparisons of classical and stochastic sensitivity analysis demonstrate the significance of
an explicit treatment of the probabilistic behavior in the analysis of these systems.

2 Discrete Stochastic Sensitivity Analysis

In discrete stochastic systems, the states and outputs are random variables characterized by
a probability density function (pdf). The sensitivity as defined in Eq. 1 requires continuity of the
outputs with respect to the parameters and hence does not directly apply to discrete stochastic out-
puts. However, the notion of sensitivity suitably applies to the density function which characterizes
the system outputs. Hence, a direct analog of classical parametric sensitivity in Eq. 1 for a discrete
stochastic system is given by [4]:

Sj(x, t) =
∂f (x(p), t)

∂pj

(2)

where f is the density function, x denote the vector of states and outputs, and p denote the vector
of parameters. The aforementioned sensitivity yields a sensitivity measure for discrete stochastic
systems:

Sj(t) = E
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f (x, t) dx (3)

An alternate measure of sensitivity comes from the field of information theory using the
Fisher Information Matrix J [9]:

J = E
[

∇p log f∇p log fT
]

(4)

which defines the lower bound for the uncertainty in the parameter estimates according to the
Cramer-Rao inequality

Vp ≥ J−1 (5)

where Vp denotes the covariance of unbiased parameter estimates. If the density function follows a
normal distribution, then the FIM simplifies to

J = ST V −1S (6)

where S denotes the sensitivity matrix as defined in Eq. 1 and V −1 denotes the measurement
covariance. Thus, under the Gaussian assumption, the FIM can be interpreted as a consolidation of
(weighted) sensitivities. This simplified FIM provides the basis of past hybrid stochastic sensitivity
analysis schemes [10]. Three sensitivity measures can be derived based on the FIM - the diagonal
elements, the eigenvalues, and the inverse of standard deviations (i.e., the inverse of the diagonals
of Vp).
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Fig. 1: Example of a sensitive distribution with insensitive mean value. The nominal distribution is
shown in solid and the perturbed distributions are shown in dashed.
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Fig. 2: A bistable system with different sensitivities between the two modes. The nominal distribu-
tion is shown in solid and the perturbed distribution in dashed.

3 Stochastic vs. Deterministic Analysis

Before proceeding to the application of the proposed sensitivity analysis, it is prudent to iden-
tify the stochastic circumstances under which the sensitivity analysis of deterministic models can
potentially fail and thus necessitate the use of discrete stochastic analysis. The fundamental differ-
ence between the deterministic and stochastic analysis is in the type of system behavior changes
that are measured in each analysis. The simplest example of such circumstances is shown in Figure
1. Here, the parameter perturbation induces large changes in the system entropy (uncertainty) [9]
with inappreciable shift of the mean (mode). Assuming that the deterministic model represents the
mean (mode) of the distribution, classical sensitivity analysis will incorrectly suggest that the system
is insensitive to the parameter perturbation as the mean (mode) of the distribution changes very
little. The stochastic analysis of this example will suggest a strong sensitivity with respect to this
parameter by taking into account changes in the overall density function.

Another example can arise from a form of nonlinear dynamics, namely multistability. A
deterministic multistable system occurs when there exists more than one attractor, for which small
variations in the bifurcating variable will lead to very different steady states. Such mechanisms are
believed to play an important role in biological systems, acting for example as dynamical switches
[7]. In this case, the differences between the deterministic and stochastic analysis can arise in a
situation such as shown in Figure 2. Due to the difference in the sensitivities of the attractors, the
deterministic analysis will incorrectly suggest insensitivity to the parameter when the deterministic
simulation converges to the left attractor; ignoring the sensitivity of the right modality.



Tab. 1: Schlögl Parameter Values
Parameter Index Parameters Values

1 Ak1 3 × 10−2

2 k2 10−4

3 Bk3 2 × 102

4 k4 3.5

4 Examples

The stochastic model of interest is described by a chemical master equation and simulated using
the stochastic simulation algorithm (SSA) [8].

4.1 Schl ögl Model

The Schlögl model describes a prototype chemical reaction network [1]

A + 2X
a1

⇄
a2

3X; B
a3

⇄
a4

X (7)

where the concentrations A and B are kept constant (buffered) and the reaction rate constants kjs
are the model parameters. The propensity functions for these reactions follow

a1 = k1AX(X − 1)/2; a2 = k2X(X − 1)(X − 2)/6;
a3 = k3B; a4 = k4X

(8)

This system possesses two stable steady states for the parameter values in Table 1. Figure 3 shows
the deterministic and SSA simulations of the Schlögl model for the two initial states X(0) = 247 and
X(0) = 250. The deterministic simulation with smaller initial value converged to the left mode, and
vice versa, the one with larger initial value to the right mode of the distribution. The bifurcation at
approximate initial condition X(0) ≈ 248 was apparent from the deterministic simulations, but the
density functions from the stochastic simulations differed very little.

Here, we applied the stochastic sensitivity analysis to the Schlögl model around the bifur-
cation point X(0) ≈ 248. As the deterministic and stochastic sensitivity coefficients have different
units, the comparisons between the two analysis focus on the relative ordering of the parametric
sensitivity magnitudes. Figure 4 shows the deterministic sensitivity orderings, while the correspond-
ing stochastic sensitivities are shown in Figure 5. The first stochastic sensitivity measure (”direct” in
Figure 5 corresponds to Eq. 3, while the remaining three represent the FIM-based sensitivity mea-
sures. The stochastic sensitivity measures were obtained from 100 independent samples of each
sensitivity measure.

4.2 Genetic Toggle Switch

The second example is a model of a synthetic genetic toggle switch consisting of two repressor-
promoter pairs, lacI repressor with Ptrc-2 promoter and a λ repressor cIts with PLs1con promoter,
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Fig. 3: Deterministic (top and bottom •) and SSA (bottom) simulations of bistable Schlögl model for

the initial conditions X(0) = 247 (left) and X(0) = 250 (right). For ease of comparison, the
state X from the deterministic and stochastic simulations were shown in comparable magni-
tudes despite having different units. Each distribution is constructed from 10000 realizations
of the state X.
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Fig. 4: Deterministic sensitivity ordering of the Schlögl model with initial condition near bifurcation.



3 2 4 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D
ire

ct

3 2 4 1
0

10

20

30

40

50

60

S
qr

t F
IM

 E
ig

.

Parameter Index
3 2 4 1

2.5

3

3.5

4

4.5

5

1/
S

td
. D

ev
.

Parameter Index

3 2 4 1
5

10

15

20

25

30

35

40

S
qr

t F
IM

 D
ia

g.

Fig. 5: Stochastic sensitivity ordering for the Schlögl model using different sensitivity measures near
bifurcation.

Tab. 2: Genetic Toggle Switch Parameter Values
Index Parameters Values

1 α1 156.25
2 α2 15.6
3 β 2.5
4 γ 1
5 η 2.0015
6 K 6.0 × 10−5

aligned in a mutually inhibitory manner [2]. Here, the expression of lacI represses the activity of
Ptrc-2, which is the promoter of cIts, and vice versa, the expression of cIts inhibits the promoter
PLs1con of lacI (see Figure 6). High expression of cIts will “light” up the cell, referred to as ON
state, and vice versa high expresion of lacI as OFF state. Addition of the inducer isopropyl-β-D-
thiogalactopyranoside (IPTG) will bias the distribution to the ON state [11]. A simple model for this
system has been proposed, with two states describing the concentration of each repressor [2]:

d[lacI]

dt
=

α1

1 + [cIts]β
− [lacI] (9a)

d[cIts]

dt
=

α2

1 + [lacI∗]γ
− [cIts] (9b)

where

[lacI∗] =
[lacI]

(1 + [IPTG]/K)η
(10)

The parameter values are listed in Table 2. The cells were initially grown in the OFF state.

For the aforementioned parameters, the system exhibits bistability [2]. Near the bifurcation
point, the stochastic system exhibited a bimodal distribution associated with the ON and OFF states,
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Fig. 6: Synthetic genetic toggle switch.
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Fig. 7: Deterministic sensitivity ordering for the genetic toggle switch at different inducer concentra-
tions. The bifurcation point occurs at [IPTG] = 7.95 × 10−5.

and the stochastic effects introduced flip-flops between the two stable steady states. The bimodality
exhibited at [IPTG] level as low as 3 × 10−5 (not shown), far less than the (deterministic) bifurcation
point at [IPTG] = 7.95 × 10−5. Figures 7 and 8 present the deterministic and stochastic sensitivity
ordering near the bifurcation point ([IPTG] = 4 × 10−5).

5 Discussion

Comparisons among the sensitivity orderings in the two examples showed discrepancies between
the deterministic and discrete stochastic analysis around the bifurcation point, in particular when the
distribution function becomes bimodal. The main reason is that the stochastic analysis was able to
capture the sensitivities of the two attractors simultaneously. In other words, the sensitivity features
of both steady states concurrently affected the stochastic analysis, but not the deterministic anal-
ysis. In the Schlögl model, the two most sensitive parameters around the bifurcation point in the
stochastic analysis were exactly the most sensitive parameters of both attractors independently, ac-
cording to the deterministic analysis. Similarly, the stochastic sensitivity of the genetic toggle switch
showed combinations of deterministic sensitivity ordering of the two attractors. Away from the bifur-
cation point however, the stochastic simulations gave unimodal distributions, and the stochastic and
deterministic sensitive orderings exhibited good agreement (results not shown for brevity).

The four sensitivity measures were in good agreement with each other, despite the differ-
ences in their interpretations. The direct and FIM diagonals are closely related to the first order
sensitivity such as Eq. 1, from their definitions. The FIM eigenvalues and the standard deviations
have less direct correlation with the classical sensitivity, but they carry additional information about
the system behavior under simultaneous multiple parameter perturbations. These measures are
closely related to information content and parametric uncertainty in parameter estimation problems.
The standard deviations provided a sensitivity measure with higher variations than the others due
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Fig. 8: Stochastic sensitivity ordering for the genetic toggle switch at an inducer concentration
[IPTG] = 4.0 × 10−5.

to numerical sensitivity of the matrix inversion required in their calculation.

The differences between the classical and stochastic analysis above give support for rig-
orous consideration of the stochastic effects in studying small systems. The genetic toggle switch
example also motivates explicit treatment of the stochastic effects in model development and param-
eter estimation, in particular, the early onset of bifurcation. Similar behavior around the bifurcation
point has also been observed in the Hopf bifurcation of of Drosophila Circadian rhythm, leading to
an early onset of oscillations [12]. In such situations, stochastic paradigms such as the CME or
chemical Langevin equation can provide information on the system dynamics that is missing from
deterministic models.

6 Conclusions

Sensitivity analysis of discrete stochastic processes incorporates the dynamics of the density
function explicitly. In small systems exhibiting multistability, the stochastic effects around the bifur-
cation point manifest as multimodal density functions and spread out the transitions between differ-
ent steady states (i.e., the stochastic effects annihilate the bifurcation between steady states). The
deterministic and stochastic sensitivity analysis around such a bifurcation point can lead to different
conclusions, as the deterministic model lacks the information of the true dynamics in the transition.
In addition, stochastic effects can induce early/late onset of the bifurcating behavior, which then
leads to inaccurate prediction of the observed bifurcation point in the deterministic model. Applica-
tions and comparisons of the deterministic and discrete stochastic analysis applied to the Schlögl
model and a genetic toggle switch model demonstrated the importance of applying the appropriate
sensitivity analysis according to the dynamics of the process.
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