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 Different simulation methods are most effective at different length scales, which 
motivate efforts to simulate overall multi-scale systems by linking multiple simulation codes 
created by experts at each scale. There are numerous examples where length and time scales 
are coupled in a serial fashion, where the results from a simulation code are used in another 
simulation code [1-7]. For example, it is common to use quantum mechanics to compute force 
fields that are used in a molecular dynamics code. For quasi-static problems, the quasi-
continuum method [8,9] couples the atomistic and continuum scales by using a system-wide 
finite element mesh that is refined to the atomic dimensions where needed. Unlike 
conventional finite elements, the energy of each cell is computed from the underlying atomistic 
Hamiltonian. Many other papers propose iterative algorithms to converge codes at multiple 
length scales to a steady-state or quasi-steady-state solution [10-13].  
 
 The need to simulate dynamic systems where a wide range of time and length scales 
are tightly coupled have motivated recent efforts to address the more challenging problem of 
concurrent multiscale simulation [14]. The FE/MD/TB hybrid approach [15] spatially divides the 
system into continuum, atomistic, and overlap regions and appropriate boundary conditions 
are shared among the various regions to obtain a self-consistent solution. An approach 
applicable to some reacting systems is the use of an effective reactivity to atomic and 
continuum scales [16,17]. In the coarse-grained molecular dynamics (CGMD) approach [18], 
the constitutive relations are derived directly from the interatomic potential by means of a 
statistical coarse graining procedure [19]. Thus, the average thermodynamic effect of the 
atomic-scale quantities is retained in the coarse-scale motion. A coarse-grained Monte Carlo 
simulation approach was recently derived that can represent mesoscopic length scales while 
correctly capturing atomistic information on intermolecular forces [20].  
 
 The direct numerical simulation approach involves running the simulation codes at 
each length scale simultaneously, with each code continually passing updated boundary 
conditions to the other codes [21-23] (e.g., see Figure 1). A weakness of the direct numerical 
simulation approach is that it can induce numerical instabilities at the interface between 
simulation codes (e.g., see Figure 2). A modified approach uses internal iterations to force 
convergence of the information passed between simulation codes [24,25]. Another 
modification updates the continuum codes more slowly than the atomistic codes, in accord with 
their different time scales [26,27]. Yet another modification introduces a dynamic coupling filter 
to improve numerical accuracy and enhance numerical stability [28]. A systematic design 
procedure for these filters has been developed using control systems theory [29,30].  
 
 Although the overlap algorithms like the FE/MD/TB hybrid approach [15] have 
significant promise, due to their ability to reduce the impact of fluctuations from the stochastic 
simulation codes (e.g., kinetic Monte Carlo simulation) on the deterministic simulation codes 
(e.g., finite differences), there is no systematical approach to the design of such algorithms. 



This presentation shows how control theory can be used to systematically design overlap 
algorithms for multiscale simulation. The approach is applied to the multiscale simulation of the 
electrodeposition of copper, which is the primary method used to manufacture on-chip 
interconnects in electronic devices. The product quality is a function of deposit shape and 
morphology. The evolution of shape and morphology is determined by nucleation phenomena 
and the macroscopic transport of ion species in the bulk onto a substrate, which includes 
adsorption of species, desorption of species, and surface diffusion. A hybrid model that 
incorporates continuum and kinetic Monte Carlo (KMC) descriptions have been developed in 
our group [28] to simulate this process for the range of time and length scales of interest. For a 
copper deposition formed using a rotating disk electrode, the thickness of the boundary phase 
forming on the substrate is ~50 microns, while the dimension of a cube lattice simulated in the 
KMC code is 12.5 nm. Similarly, the time scale of the process varies from 1 ns, which is the 
average time step of KMC code to several milliseconds, which is the time constant for 
depletion of copper at the interface under high potential. 
 
 
 
 
 
 
 
 
 
Figure 1. The direct dynamic coupling of a finite difference and a kinetic Monte Carlo code to 
simulate copper electrodeposition into a submicron trench. A finite difference code simulates 
the continuum model that describes the transport of ions from the bulk to the surface and a 
kinetic Monte Carlo code simulates the surface evolution and morphology.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The concentration and flux of cupric ions at the interface between the domains of a 
directly coupled finite difference and kinetic Monte Carlo (FD-KMC) code obtained from a 
simulation of copper electrodeposition into trench feature in the absence of additives. Both 
signals shown are highly noise-corrupted and growing exponentially with time. 
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 The main component of the overlap algorithm is a minimum variance KMC output 
estimator [31] constructed based on a continuum model that captures the adsorption-diffusion 
processes simulated in the Monte Carlo domain (see Figure 3). At every time step, the KMC 
code computes the average concentration for each species at the interface and passes that 
information to the continuum code. The continuum code then integrates the continuum model 
over the same time step and passes the flux information to the KMC code. The coupling 
algorithm, which is a recursive output estimator, uses the flux information passed from the 
continuum code and the stochastic KMC output calculated over the same period to estimate 
the concentration for each species at the interface, which is then passed to the continuum 
code for the next computation iteration. The description of the continuum model in the Monte 
Carlo domain is constantly updated at each time step to track the moving boundary condition 
determined by the deposit surface simulated in the KMC code. This continuum model is then 
solved by finite differences to obtain a linear discrete time varying system upon which the 
minimum variance estimator algorithm can be applied. The state of the resulting system is the 
concentration field inside the Monte Carlo domain (see Figure 3). The linear time varying 
system is a stochastic system with additive Gaussian white noises. The output of the system is 
a realization of a Poisson event, which models the output distribution of the KMC code.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The minimum variance estimator (MVE) estimates the concentrations at each grid 
node in the overlapped region within the kinetic Monte Carlo domain based on cumulative 
information feed from FD and KMC codes. The estimates at the interface (shown here at the 
top) are then passed to the finite difference code. 
 
 
 The simulation results show that the estimator not only numerically stabilizes the 
linkage between the continuum and the KMC codes, but also it gives more physically 
consistent simulation results as the noise of the concentrations and fluxes along the boundary 
is significantly reduced (see Figure 4). The results of the coupled continuum and KMC code 
were evaluated for consistency using the test proposed by Drews et al. [28].  
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Figure 4.  The concentration and flux of cupric ions at the interface between the domains of 
the coupled finite difference and kinetic Monte Carlo (FD-KMC) codes that incorporate a 
minimum variance estimator with the overlapped algorithm. The results were obtained from 
copper electrodeposition with identical conditions as in Figure 2. The system reaches steady-
state rapidly and displays no numerical instability.  
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