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 Applications in materials, medicine, and computers are being discovered where the 
control of events at the molecular and nanoscopic scales is critical to product quality, while the 
primary manipulation of these events during processing occurs at macroscopic length scales.1 
In such applications, one of the most significant engineering challenges is to achieve control 
over phenomena that occur simultaneously at different length and time scales that can span in 
excess of ten orders of magnitude. With the limitation of the dynamic and local information that 
can be collected experimentally, multiscale computation is needed to provide predictions at all 
scales. 
 
 There are numerous examples where the simulation of multiple length scales are 
coupled in a serial fashion, where the results from a simulation code is used in another 
simulation code.2 For example, continuum Stokes equations were combined with the direct 
simulation Monte Carlo (DSMC) method3 by an overlapped Schwarz alternating method with 
Dirichlet–Dirichlet type boundary conditions. Alternatively, the quasi-continuum method4 
couples the atomistic and continuum scales by using a system-wide finite element mesh that is 
refined to the atomic dimensions where needed. Unlike conventional finite elements, the 
energy of each cell is computed from the underlying atomistic Hamiltonian. As a further 
variation, the FE/MD/TB hybrid approach5 spatially divides the system into continuum, 
atomistic, and handshake regions where different numerical models are appropriate, and 
Hamiltonian-based boundary conditions are shared among the various regions to obtain a self-
consistent solution. 
 
 In recent years many researchers have dynamically coupled simulation codes at each 
length scale to run simultaneously, with each code continually passing updated boundary 
conditions to the other codes.6 Many papers have proposed iterative algorithms to converge 
coupled codes at multiple length scales to a steady-state or quasi-steady-state solution.7 A 
modification of this approach uses internal iterations to force convergence of the information 
passed between simulation codes.8 While this approach can provide physical and numerical 
consistency between coupled codes, a large perturbation in external variables (e.g., as may 
occur at the beginning of a simulation or during a sharp transition) can result in numerical 
stability problems in one of the individual codes, resulting in an internal iteration that cannot 
converge. In this presentation, we propose numerical coupling algorithms to suppress 
numerical instabilities and improve the numerical accuracy of simulation codes dynamically 
coupled at physical boundaries. With the existence of physical boundaries, the model and time 
and length scales in each individual simulation code can be vastly different, which can result in 
significant external perturbations to the individual codes. Note that such coupled problems are 
different from so-called sub-domain problems,9 in which there only exist virtual boundaries 
between the simulation sub-domains.  
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t: independent variable; x, y: vectors of differential variables; u, v: vectors of algebraic variables 

φ, ζ: vectors of linked or external (differential and algebraic) variables 
 

Figure 1. A semi-explicit DAE problem simulated by dynamically coupling two codes. 
 
 Although the proposed algorithms can be applied to dynamically couple continuum-
continuum or continuum-noncontinuum simulation codes, the analysis was applied to the 
situation where both codes simulate DAEs (see Figure 1), to facilitate the numerical analysis. 
Numerical algorithms are proposed that guarantee unconditional absolute stability and second-
order accuracy in the solution of coupled semi-explicit stiff DAE problems with index up to 2. 
We started with the analysis of the numerical accuracy and stability properties of multiscale 
predictor-corrector methods with the presence of external perturbations at the interface 
between the individual simulation codes. It was demonstrated that to ensure second-order 
accuracy and absolute stability of the predictor-corrector (PC) methods in solving stiff DAEs, 
the external perturbations ε in the state variables (i.e., the errors caused by the dynamically 
updating the value of the external variables) should be controlled at ||ε||< a(h2), a∈(h,1/h), 
where h is the integration step size. We analyzed the advantages and disadvantages of the PC 
algorithm and an implicit variation on PC algorithm. The PC algorithm requires lower 
computational cost and is easier for load-balancing on parallel computers. Using the most 
recently calculated value of the external variables (the Gauss-Seidel approach) in the PC 
algorithm is shown to lower the numerical accuracy of the coupled simulations to first order, 
regardless of the numerical accuracy of the individual simulation codes. 
 
 This numerical analysis motivated an error-control climbing mechanism, which limits 
the perturbation in the external variables via partial integration steps to satisfy the absolute 
stability requirement. The algorithm starts off with adding a fraction of the change in each 
external variable at each partial integration step. This fractional addition is selected to be small 
enough that a condition for the unconditional stability of the PC method is satisfied. This 
fractional addition is relaxed dynamically depending on convergence along the progress of the 
solution, and the number of partial integrations at each solution step changes accordingly. The 
climbing algorithm was motivated by the need to gain unconditional stability in solving coupled 
stiff ODE/DAE problems with the presence of external perturbations, while the existing 
multirate10 or multistage algorithms (e.g., Runga-Kutta) are targeted for accuracy control and 
are not sufficient for stability control. 
 
 The second-order error-control climbing algorithm was applied to the simulation of a 
semi-explicit index-2 stiff DAE system that models an electrochemical process (see Figure 2). 
The mathematical model of pit initiation at single sulfide inclusions in stainless steel was 
developed by Webb and Alkire11,12 for predicting the pitting potential, based on the local 



chemical environment produced by dissolution of a sulfide inclusion on stainless steel (see 
references for details on the physical problem, computational domain, and simulation 
parameters). The results were compared to the results of previous simulations that used a 
monolithic code that solves a single DAE system consisting of the diffusion-migration 
equations, equilibrium expressions for the bulk species, and chemical and electrochemical 
reactions at the surface. 
 
 In this study, the corrosion process was simulated as two coupled codes (see Figure 1) 
using the error-control climbing algorithm. The coupling of the simulation codes showing the 
boundary information passed between codes is shown in Figure 2. This application of finite 
differences in the spatial dimensions to the algebraically constrained 2D PDE model results in 
large-scale highly stiff DAEs for 21 chemical species with multiple chemical and 
electrochemical reactions with vastly different rates. The transient codes simulate the local 
concentration and potential values in the coupled micro-crevice and bulk regions, which can 
not be measured experimentally but are essential to the understanding of the role of sulfide 
inclusions in the initiation mechanism of localized corrosion of stainless steel.  
 

 
 

Figure 2. Coupled simulation of the pit initialization in stainless steel. 
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Figure 3. The number of internal iterations n and the function residuals for the individual codes in the 
dynamically coupled simulation. 

 
 The number of partial integration steps and residuals in each code is shown in Figure 
3, in which the linking time step was 0.5 s. It is evident from the residuals in Figure 3b and by 



comparison of the simulated results to those of the monolithic code that the climbing predictor-
corrector algorithm numerically stabilized the simulation with a high level of numerical 
accuracy. No partial integration steps were needed by the crevice simulation to converge at 
each iteration, whereas the bulk simulation needed as many as 21 partial integration steps 
before passing boundary information to the crevice simulation (see Figure 3a). The number of 
partial integration steps needed by the bulk simulation to satisfy the absolute stability 
convergence criterion reduced to 2 after 8 s, and remained at 2 for the remainder of the 
simulation. Hence the overall computational cost of the second-order-accurate numerical 
algorithm for time after the initial period of 8 s is within a factor of 2 of using direct coupling of 
the two codes, which was shown by numerical analysis to only be first-order.  
 
 The initial large and varying number of partial integration steps in Figure 3a prevents 
efficient load-balancing on parallel computers, and is computational expensive for short 
simulation times. We are currently investigating modifications of the initialization of the 
dynamically coupled codes to reduce the initial number of partial integration steps. The goal is 
to retain second-order accuracy while requiring the minimum number of extra iterations. 
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